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1 Introduction 

This thesis work deals with the resolution of boundary value problems via Finite Element 
(FE) analyses. Since powerful computers have come to be accessible to the common users, 
the use of FE methods to solve engineering problems has been stimulated. Many FE codes 
have been developed, both for professional and for research purposes. 

The standard FE method has been widely developed starting from the pioneering 
work carried out in the last century by many researcher in both mathematics and engineering 
fields.  

A geometrical representation of the boundary value problem, object of the study 
allowing the decomposition of the geometry for a complex domain in simpler sub-domains, 
has to be provided by the user; the sub-domains are the elements, which are defined as finite 
since they are bounded by polygons so that each one occupies a finite area, and the entire set 
of elements forms a mesh of finite elements. 

Each element is characterized by a finite number of integration points (Gauss points) 
in which the governing equations are formulated. The overall solution, in terms of nodal 
displacements, is achieved in a variational form by enforcing the solution of an energy 
function typically formulated in an integral form, the so called “weak form” of the Virtual 
Work Theorem.  

Because of the discrete nature of the formulation, the integration operation becomes a 
finite sum over the Gauss points of the whole domain. Once the general solution is achieved, 
enforcing the fulfilment of the boundary conditions, the state of stress is determined for each 
Gauss point from the stress-strain relations, and the local solution is extended to the vertices 
of the elements (nodes) and then to the whole domain. 

The resolution of a boundary value problem via FE analyses requires the assumption 
of a constitutive model in order to simulate the stress-strain behaviour at Gauss point level 
for each material involved in the analysis.  

For some of the materials commonly used in civil and industrial engineering, 
relatively simple constitutive laws are able to describe and to model the real mechanical 
behavior: for example, as for steel structures, a linear elastic relation is able to well capture 
the material behaviour for loading levels far from the yielding load.  

If we complete the former relation with a yield criterium aiming to predict the overall 
behaviour when the yielding load is approached, we obtain a more complex law but now able 
to predict the mechanical behaviour for a wider loading range.  

For more complex materials, such as concrete or granular materials, the need of  
constitutive laws more realistic than a simple Young elastic relation is nowadays commonly 
acknowledged..  
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Moreover, the availability of higher-performance CPUs has encouraged an intense 
development of complex constitutive laws starting first within the framework of the 
elastoplasticity, and then following even different mathematical structures.  

As for the geomaterials, the work of the Cambridge group, and mainly by Schofield 
and Wroth, has brought to the development of the Cam-Clay model (Schofield and Wroth, 
1967), that is a milestone in the world of elastoplasticity. 

Most of the constitutive models nowadays available for the resolution of  BVP 
involving geomaterials, such as the extensions or modifications proposed by many 
researchers (see e.g.(Nova, 1977),(Nova, 1988),(Borja and Tamagnini, 1998),(Lade, 1977)) 
stem from Cam-Clay pioneer model.  

Besides, many other constitutive models have been developed outside the framework 
of elastoplasticity: in the recent past a new family of constitutive laws has been proposed 
coming from the studies of two separate research groups, the former in Karslruhe, which 
brought to the K-hypoplasticity, the latter in Grenoble, with the CLoE hypoplastic model. 

The predictive capabilities of the hypoplastic models for the resolution of BVPs have 
been investigated in many papers (e.g.(Viggiani and Tamagnini, 2000),(Leoni and 
Montrasio, 2003),(Leoni et al., 2003)) for different classes of geotechnical engineering 
problems involving rather different stress paths. 

Whatever constitutive model is chosen for the soil, the best confirmation of its 
predictive capacity comes from the comparison with measurements on real structures, since 
the more complex a constitutive law is, the larger is the set of parameters involved in its 
definition.  

A higher number of parameters to be calibrated brings to an higher level of 
uncertainty on the final results: one can therefore understand the importance of a reliable set 
of experimental measurements allowing to perform a comparison between FE predictions 
and real data, in order to assess the reliability of the FE model for a particlar class of BVP. 

Nevertheless, it must be pointed out how hard is to have a good set of experimental 
measurements available due to the intrinsic difficulties for which special equipments are 
required, and to their consequent high cost. 

In this thesis work, two different constitutive models have been implemented: an 
elastoplastic model (SSC) which is a simplified version of the original “Sinfonietta Classica” 
(Nova, 1988), and the hypoplastic CLoE model (Chambon et al., 1994).  

We have chosen to make some simplifications in the original SC mainly because of 
its formulation: the original SC has a complicated definition for the constitutive functions, so 
that their mathematical formulation has been restricted to the first and second invariant of 
stress tensor, thus neglecting the dependence on the Lode’s angle.  

Moreover, while the hardening law, which relates the evolution of the hardening 
parameter to the plastic deformations, has been implemented in differential form, in the 
original SC an integrated formula is given.  

The commercial FE code chosen for the implementation is Abaqus, by Hibbitt, 
Karlssonn and Sorensen, due to its wide diffusion in both research and applied engineering 
domains and the possibility given to the user to implement its own constitutive relations.  
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A large set of experimental measurements was available coming from the work by 
Montrasio and Nova (Montrasio and Nova, 1997), thus the laboratory tests have been 
simulated via FE analyses in order to compare the numerical results with the experimental 
ones and to evaluate the predictive capabilities of the two models.  

In the next paragraphs of Chapter 1, an overview on the resolution techniques for the 
problem of shallow foundations followed by some details about the FE method will be given, 
together with a description of the experimental set-up and the laboratory tests. 

In Chapter 2 a wide description of the two models will be given, while in Chapter 3 
full details of the implementation process are depicted, along with the description of the 
validation tests performed in order to assess the reliability of the two implementations.  

In Chapter 4 the BVP of a rigid shallow foundation on sand is studied, and the results 
are compared to those obtained in the laboratory tests, aiming to assess the capability of the 
models to capture the real behaviour of the footing during loading tests.  

In addition to the complex constitutive models, an extended version of a more simple 
well-known Mohr-Coulomb model, already implemented in the FE code, is used. 

Its description is given in the next introductory pages; moreover, after a discussion 
about the obtained results, some conclusions are drawn in Chapter 5.  
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1.1 Modelling of shallow foundations 

The study of the behaviour of the soil on which a shallow foundation is built is both a 
classical academic and an applied engineering problem that has been studied from many 
different points of view.  

Many conferences have been and continue to be organized about this topic, and many 
researchers and practising engineers give their contribution with case histories and studies of 
academical problems.  

Mainly the problems on which it has been investigated in the past are the 
determination of the bearing capacity and the prediction of the settlements experienced by 
the foundation during the construction stages and the whole life of the structure. 

To this end, many methods have been developed in the field of analytical methods 
and physical modelling, and the recent development of high performance calculators has 
stimulated the use of numerical methods.  

Within the framework of physical modelling, many Authors have performed 
experimental tests on scaled problems, by reproducing the real problem reducing the 
dimensions of the foundation by a scale factor.  

Many theoretical methods have been developed in order to extend the results obtained 
on the scaled models to the real cases, and in this framework must be regarded the macro-
element approach proposed by Montrasio and Nova (Montrasio and Nova, 1997). In the 
same framework, some other models have also been recently proposed (Nova and Di Prisco, 
2003),(Cremer et al., 2002),(Cremer et al., 2001),(Butterfield and Gottardi, 2003).  

The common assumption of these approaches is the substitution of infinitesimal 
variables, like stress and strain variables, with external loads and displacements by 
considering them as generalised stress and strain variables, respectively. 

In other cases, according to the Buckingham theorem about model scaling, the weight 
of the soil has been suitably increased making use of a geotechnical centrifuge in order to 
directly transpose the experimental data as a solution to the real problem.  

About this last approach many papers have been written using a variety of centrifuges 
which differ from a dimensional point of view and from the maximum tangential velocity 
they can reach. The use of such a technique has been used for studying many problems, from 
the physical modelling of piles (Colombi, 2005) to the bearing capacity of offshore structures 
(Allersma, 2003). 

Another “classical” approach to the problem of shallow foundations is based on the 
theoretical models proposed for the determination of the limit load and for the prediction of 
the settlements experienced by the structure.  

Among the methods taken into consideration are the simplified schemes in which the 
soil is considered rigid and perfectly plastic for the determination of the limit load, and  
perfectly elastic for the evaluation of the settlements.  
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Other approaches,that are different but can still be included in this family of methods, 
have been developed using the principle of overposition of effects (Terzaghi, 1943) which 
have brought to many subsequent studies in which many different aspects, like the load 
inclination or eccentricity, have been taken into account by multiplying by empyrical factors 
the terms of the general expression proposed by Terzaghi (Brinch Hansen, 1967),(Vesic, 
1975).  

In all these methods the most important parameter is the friction angle of the soil, 
since the range of variability of the bearing capacity of a shallow foundation is strongly 
influenced by the value assumed for the shear resistance angle. 

For evaluating the settlements for a shallow foundation, in most cases the elastic 
solutions proposed by Boussinesq (Boussinesq, 1885) or their extension of the simple point-
load case (Poulos and Davis, 1974) have been and are still used.  

A strong limitation of such an approach is the use of elastic parameters, directly 
related to the Young modulus E and to the Poisson ratio ν, since the experimental behaviour 
of granular and soft soils is far away from being elastic. The numerical evaluation of such 
parameters, which play a fundamental role in the computation of the settlements, is not 
therefore straightforward.  

In recent years, thanks to the availability of high-performance CPUs at low cost, 
many advanced numerical models have been developed to solve the systems of differential 
equations involved in the resolution of many engineering problems.  

In particular, in geomechanics and geotechnical engineering, many numerical 
methods have been proposed: the most important are the Finite Difference (FD) method, the 
Boundary Element Method (BEM) and the Finite Element Method (FEM), which is 
nowadays a well-established solution technique widely used for the resolution of many 
different kinds of problems.  

In addition, in the last decade another approach was proposed: the Discrete Element 
Method (DEM), has come to light thanks to the theory mainly developed by Cundall 
(Cundall and Strack, 1979) however, due to the high computational cost of the method, the 
application for the resolution of complex geothechnical engineering problems seems still far 
from being accessible to the common user. 

Among the methods cited above, the FEM is undoubtedly the most used both in 
research and in practical applications.  

During the last years many aspects have been studied about this method, which 
requires the definition of a mechanical behaviour for the soil through the choice of a 
constitutive model.  

Many constitutive models have been developed, within the framework of 
elastoplasticity, starting from the pioneering Cam-Clay model by Schofield and Wroth 
(Schofield and Wroth, 1967) and following other theoretical models, like for example, 
hypoplasticity. 

After their implementation in FE codes, they have come to be available to researchers 
and practising engineers for the resolution of boundary value problems.  

Nowadays, many studies and researches are carried out about mathematical problems 
involved in the application of the FE model (e.g. (Tamagnini et al., 2000),(Borja et al., 
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2001)), about implementation algorithms (e.g. (Leoni, 2004),(Fellin and Ostermann, 2002)) 
and the application of the method for the resolution of geotechnical engineering problems. 

Since this work mainly focuses on the use of the FE method for the modelling of 
shallow foundations on sand, some further details about the method will be given in the next 
Section 1.2, while in Section 1.3 a description of the laboratory tests which have been chosen 
as reference for the evaluation of the predictive capacity of the constitutive models 
considered, will be given. 
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1.2 The FE method 

Since this work focuses on the numerical modelling of the loading tests described in Point 
1.3, a brief description of the finite element (FE) method will be given.  

While this introduction aims to give an outline of the main characteristics of the 
method, some further details will be given in Chapter 3, focusing on the implementation of 
the constitutive routines. 

The basic principle behind the FE method is the decomposition of a continuum 
problem, controlled by an infinite number of variables, in an assembly of a finite number of 
sub-domains to form a discrete system, in which only the definition of a finite number of 
variables is necessary. The solution  of a complicated problem is obtained by approximating 
the solution over each sub-domain (element) by a simple function. The functions used to 
represent the behaviour of the solution within an element are called shape (or interpolation) 
functions, and they are usually chosen as polynomial functions.  

  

 
Fig. 1.1   Problem domain Ω and boundary Γ (Zienkievicz and Taylor, 2000). 

The general problem of continuum mechanics is to find a displacement function u so that a 
set of differential equations, say the differential equilibrium equations, is satisfied over the 
domain Ω, together with the boundary conditions specified on Γ (Fig. 1.1).  

In order to solve the system of differential equilibrium equations, we follow a 
variational approach, in the sense that a test function is introduced and the differential 
equations, multiplied by such a function, are integrated over the domain Ω. 

Being the FE method an approximated one, we can freely take the test function δu as  
shape function N multiplied by an arbitrary function δa , and the global solution u can be 
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expressed as function of the nodal displacements ia and of the shape functions iN which 
depend on the interpolation chosen for the elements (Eq. 1.1). Global shape functions iN are 
therefore written as local shape functions over each element, and then suitably assembled 
into an incidence matrix eZ , which reflects the topology of the discretization and makes 
possible the transition from the local nodal displacements u to the global displacements ia . 

 i i i eδu=Nδa;   u= N a ;    a =Z a∑  1.1 

From the fulfilment of the differential equations governing the physical process and of the 
boundary conditions, stems that the virtual work statement 1.2 which represents the so-called 
weak form of the equilibrium equations, has to be zero. 

 

int ext

T T T

Ω Ω
f f

δε σdΩ δu bdΩ δu td 0
Γ

− + Γ =∫ ∫ ∫  1.2 

It can be observed how the first term of the LHS accounts for the internal forces acting on 
the body, while the other terms depend on the external (known) forces.  

Moreover, the integral accounting of the internal forces can be worked out 
introducing 1.3, and 1.4: 

 Tδ =Sδu,   S    
x y z

ε
⎧ ⎫∂ ∂ ∂

= ⎨ ⎬
∂ ∂ ∂⎩ ⎭

 1.3 

 iB= N
ix

∂
∂

 1.4 

Simplifying equation 1.2 we obtain:  

 T T
extZ B σdΩ  +  f 0e Ω

=∫  1.5 

The resolution of the problem can be carried out via an iterative procedure: starting from an 
equilibrated configuration, computed for the nth step of the analysis, a displacement 
increment is imposed and a load increment is consequently applied onto the body. Our task is 
to find a solution, i.e. a displacement u such that: 

• The body is equilibrated at (n+1)th step: 

 T T ext
n+1 n+1Z B σ dΩ  +  f 0e Ω

=∫  1.6 

• The stress update is compatible with the constitutive assumption given for the 
material. 
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1.2.1 The equilibrium iteration 
After a general description of the FE method, it is worth going deeper into the description of 
the general procedure to be followed for its application: a displacement increment is given 
starting from the equilibrated body with the known nodal displacements na : 

 n+1 n na a +∆a=  1.7 

The strain in the element at the end of the increment is 

 1 SNa Banε + = =  1.8 

The element is therefore deformed by the strain increment 

 n n+1 nε ε ε∆ = −  1.9 

wherein nε  is known. By means of the constitutive law, the stress increment is computed 
starting from the strain increment. Hence, the new state of stress is computed and the internal 
forces are evaluated. Equation 1.6 is therefore solved by Newton-Raphson iterations, that 
requires the evaluation of the derivative of the LHS of equation 1.6, which is the residual 
R(dn+1) of the iteration.  

 T ext
n+1 n+1 n+1B d f R(d )T

eZ σ
Ω

Ω + =∫  1.10 

The solution is accepted when the residual approaches zero, thus meaning the equivalence 
between internal ant external forces. The derivative of the residual is the so-called consistent 
tangent operator of the kth iteration, because it is consistent with Newton’s method. 

1.2.2 Consistent tangent operator 
To evaluate the consistent tangent operator of the kth equilibrium iteration, equation 1.10 has 
to be differentiated with respect to n+1d . Provided that the system of external forces is 
independent from n+1d , the derivative of the residual can be written as 

 T T n+1
n+1

n+1

element tangent stiffness

Z  B Bd Z  R (d )e e
σ
εΩ

⎛ ⎞∂ ′Ω =⎜ ⎟∂⎝ ⎠
∫  1.11 

The material information on the element level to build the consistent tangent operator is the 
so-called Jacobian: 

 
( )
( )

n+1 nn+1

n+1 n+1 n

σ σσ
ε ε ε

∂ −∂
=

∂ ∂ −
 1.12 
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The general strategy used by Abaqus and many other FE packages, is the cosolution: the FE 
code solves the equilibrium problem, while the constitutive law is solved by a solver for 
ordinary differential equations.  

In particular, the solver must provide the FE code with both the updated stress and the 
consistent tangent operator (Hibbitt et al., 2003).  

Another possibility supplied by Abaqus is the possibility to make use of user defined 
constitutive models, in addition to the models already embedded in the library of constitutive 
routines of the program. In this case, the routine must fulfill the tasks which would have to 
be accomplished by the numerical solver, i.e. for each equilibrium iteration, stresses have to 
be updated, as well as the Jacobian of the (n+1)th iteration.  

A fundamental role is played by the constitutive assumption for the material, since it 
is directly involved in the computation of the element tangent stiffness. A non-linearity in the 
formulation of the constitutive model provokes a non-linearity in the internal force vector 
and a suitable integration strategy has to be developed in order to get the solution in terms of 
stress and Jacobian updating at the end of each time increment. Some further details about 
the integration strategies will be given in Chapter 3, dealing with the implementation of the 
constitutive models. 
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1.3 Laboratory tests on shallow foundations on sand 

The experimental testswere performed at ISMES Laboratory in Bergamo (Italy) and are 
widely described in (Montrasio, 1994). The main purpose of the experiments was the 
modelling of the behaviour of rigid shallow foundations on sand.  

As far as the materials used and the testing procedures is concerned, an accurate 
description will be given in the following paragraphs.   

1.3.1 Description of the granular material 
The experimental tests were carried out using an homogeneous layer of dense Ticino sand, 
which is widely studied and used for laboratory tests. Physical characteristics of the material 
are summarized in Table  1.1 and Fig. 1.2. 

As for the density, although three different values for the relative density were 
obtained by pluvial deposition (DR=0.45, 0.70 and 0.96), in this work only the denser 
material has been chosen as reference, that is to say the one with DR=0.96.  

In Fig. 1.3 the shear strength values are plotted versus the confining pressure, for a 
relative density within the range 0.80-0.90. (Bellotti et al., 1985) 

 
γmax  

(kN/m3) 
γmin  

(kN/m3) 
D10 

(mm) 
D50 

(mm) 
D60 

(mm) Gs 

16.68 13.65 0.29 0.47 0.51 2.649 

Table  1.1   Physical and geometric characteristic of Ticino sand. 

 

 
Fig. 1.2   Granulometric curve of Ticino sand. 
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Fig. 1.3 Shear strength for Ticino sand (Bellotti et al., 1985). 

 

1.3.2 Experimental apparatus 
The homogeneous sand layer was set into a 0.8 m high cylindrical metallic caisson with a 
diameter of 1.2 m.  

A pluvial deposition technique was chosen in order to obtain the desired relative 
densities of 0.45,0.70 and 0.96. As a support for the tools allowing the application of vertical 
loads, a steel frame was applied to the container and pulleys to the side bars in order to apply 
the horizontal loads, if required by the testing procedure. An overall image of the 
experimental apparatus is given in Fig. 1.4. 

The model foundations were modelled using 0.08 m wide metallic plates with three 
different lengths of 0.08, 0.016 and 0.024 m so that three different shape ratios  
(length/width) a=1, a=2 and a=3 were considered.  

Due to the plate’s thickness and particular shape it can be considered to be perfectly 
rigid with respect to the stiffness of the soil. Moreover, the foundation has several grooves 
fitting with the loading blade (Fig. 1.5) to make possible the application of eccentric and 
inclied loads with negligible spurious overturning moments 

For all series of tests of interest, sand was glued to the foundation base to assure a 
perfect roughness of the base, but some preliminary tests were carried out in which the base 
of the metallic plate was smooth, in order to check the influence of the friction on the final 
results.  

The loading ram (Fig. 1.6) is a servo-controlled oleo-dynamic piston by means of 
which a constant load rate can be imposed on the foundation.  
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In order to perform tests in which the vertical load is constant but the horizontal load 
and/or overturning moment increases, a different loading system is used: a horizontal steel 
wire was connected to a vertical stick.  

Horizontal load and overturning moment were given by applying a dead weight to the 
wire which pulls the foundation via a pulley. A load cell was used to quantify the frictional 
loss of the pulley.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.4   Experimental set-up (Montrasio and Nova, 1997). 
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Fig. 1.5   Geometry of the foundations (Montrasio and Nova, 1997). 

 
 
 

 
Fig. 1.6   Loading ram  (Montrasio and Nova, 1997). 
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1.3.3 Test procedures and data collection 
By applying loads to the metallic plate, six different cases were analyzed on the foundations 
with different aspect ratios (a=1,2 and 3): 

 
• centered vertical loading; 
• inclined loading (with no overturning moment) from zero to failure; 
• eccentric loading (with no horizontal load) from zero to failure; 
• application of a horizontal load and overturning moment at constant centred vertical 

load, from zero to failure; 
• application of a horizontal load at constant; 
• eccentric vertical load. 
 

A total of 90 tests were performed, some of them aiming to check the repeatability of the 
tests and the influence of some factors, like the distance from the border of the caisson or the 
roughness of the base of the metallic plate. In addition, some tests were performed also on 
foundations set at different depths in order to study the influence of the lateral weight of the 
soil on the predicion of the limit load. 

As far as the measurement procedure is concerned, horizontal loads were known since 
directly applied as dead loads, while load cells between the piston tip and the foundation 
gave the measure of the applied vertical load.  

After their calibration, three linear variable differential transducers (LVDT) were 
placed in a suitable way (not aligned) on the metallic foundation and 3 on the sides of the 
plate (2 on the longer side) in order to measure vertical and horizontal displacements of the 
plate, while rotations in three independent directions can be easily computed knowing the 
displacements and distances between the LVDTs. The presence of spurios moments and 
rotations would have requested a larger number of LVDTs to be placed in order to measure 
such out-of-plane movements.  

The particular loading technique, however, has assured the reasonable absence of 
such components, thus allowing to limit the number of transducers required.  

The LVDTs were connected to a data logger allowing a continuous data acquisition, 
so that the measurement system allowed to know horizontal and vertical loads, horizontal 
displacement  and vertical settlement, applied momentum and the rotation of the foundation. 

All the colleced data were plotted in graphs using a common spreadsheet which 
played a fundamental role since they have been the reference for further comparisons 
between numerical and experimental results, as will be described in Section 4.2.  



 



 

2 Constitutive models for the soil 

When the resolution of a geotechnical engineering problem is solved via FE analyses, the 
most crucial step is the choice of the constitutive model for the soil.  

As long as computer capabilities were limited, due to both the CPUs’ low clock speed 
and by the limited storage capacities of the mass storage memories, one had to deal with the 
computational cost of each analysis, since it was the bottleneck of the whole process.  

Only simple constitutive models could be used, and the behaviour of soils was often 
modelled by a simple linear elastic law; even the implementation of a Mohr-Coulomb failure 
criterium could be cumbersome as regards the computational time required for the analysis. 

Nowadays, that powerful CPUs are available at low costs and the data storage is no 
more a problem, researchers have pushed themselves towards more complicated models 
aiming to a better reproduction of the mechanical behaviour of materials, in general, and 
particularly of geomaterials.  

The last part decades have seen the birth of a large quantity of constitutive models 
starting from the first Cam-Clay model, developed in the ‘60s by Schofield and Wroth 
(Schofield and Wroth, 1967) within the framework of elastoplasticity.  

Perhaps the problem is exactely the opposite: in these last years a huge quantity of  
constitutive models has been developed, so that when the geotechnical engineer has to “pick” 
a suitable constitutive model for the soil, he could be a little bewildered.  

Two are the questions to be answered when choosing a costitutive model, and 
particularly for geomaterials:  

 
1. Is it accurate enough in reproducing the mechanical behaviour, considering 

the particular class of engineering problem I am studying? 
2. Am I able to carry out a satisfactory calibration of the material parameters of 

the model with the available experimental data? 
 

For answering to the former question a systematic study on different classes of engineering 
problems would be required. In technical literature is not easy to find such a studies, and in 
the last years some analyses have been performed in order to assess the capability of many 
classes of constitutive models to predict ground movements around excavations (Viggiani 
and Tamagnini, 2000),(Leoni et al., 2003) and retaining structures (Tejchman and Herle, 
1999).  

The latter question is much more difficult, because it involves specific know-how: not 
always we agree, for example, on the definition of simple laboratory or in situ tests. Due to 
the cost of experimental tests, it is often difficult to have reliable measurements or test data 
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available for the FE analyst in order to carry out a proper identification of the constitutive 
parameters. 

In this work the problem of shallow foundations on a dense Ticino sand is studied. 
 Three different constitutive models have been used: the Advanced Mohr Coulomb 

model (Ménetrey and Willam, 1995) already present in the library of constitutive models of 
ABAQUS FE code; a simplified version of “Sinfonietta Classica” (modified from (Nova, 
1988)) and the hypoplastic CLoE constitutitve model which has been developed in Grenoble 
over the last 20 years (Chambon et al., 1994).  

The last two models have been implemented by the Author as user-defined models 
exploiting the possibility given by ABAQUS to implement user-defined models through the 
umat routine. 

 In the next paragraphs a description of the models will be given, first defining the 
main features of the families of constitutive model considered. 
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2.1 Elastoplasticity 

Two of the three models used, namely the Extended Mohr Coulomb and the Simplified 
Sinfonietta Classica, have been developed within the framework of elastoplasticity. The 
plasticity theory has been primarly introduced for modelling the mechanical behaviour of 
steel, and it has therefore extended to other materials such as soils. 

The basic assumption of plasticity, and in particular of elastoplasticity, is the tensorial 
decomposition of the total strain tensor in an elastic and a plastic part: 

 el plε ε ε= +  2.1 

It is worth noting that equation 2.1 is often formulated in rate form. Main features of 
plasticity are: 

 
• Yield criterion (defined through a function f): is a boundary between admissible and 

impossible states of stress, usually formulated in terms of deviatoric and mean 
stress. By definition, only points inside the domain bounded by f or on the boundary 
f itself can represent a possible state of stress. In particular, in elastoplastic models, 
the area inside f is the so-called elastic domain since the behaviour inside the yield 
function is purely elastic and completely reversible.  

• Plastic potential g. The essential feature that characterizes plastic flow is the 
concept of irreversibility: the direction of plastic strains is defined through the 
gradient of plastic potential g and its norm is given by the flow rule (Eq. 2.2): 

 pl
gε λ
σ

∂
=

∂
 2.2 

• Hardening law (Eq. 2.3), which defines the evolution of the hardening parameter(s) 
q with respect to the scalar λ and function h: 

 ( , )q h qλ σ=  2.3 

g and h are prescribed functions which define the direction of plastic flow and the type of 
hardening. The parameter λ  is a nonnegative parameter, called consistency parameter (Simo 
and Hughes, 1997), which is assumed to be constrained by the Kuhn-Tucker 
complementarity conditions: 

 0,    ( , ) 0,    ( , ) 0f q f qλ σ λ σ≥ ≤ =  2.4 

In addition to conditions 2.4, equation 2.5 has to be fulfilled: 

 ( , ) 0f qλ σ =  2.5 
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In the scientific literature, conditions 2.4 are the loading/unloading conditions, while 
equation 2.5 goes by the name of consistency condition.  

To better understand the role played by  the Kuhn-Tucker conditions, let us consider 
the unloading/reloading case: by definition, ( , ) 0f qσ < , so that λ must be equal to zero to 
have the 3rd equation of 2.4 fulfilled.  

From the flow rule (2.2) and the hardening law (2.3) it follows that 0plε =  and 
0q = , thus the process is perfectly elastic, and elε ε= .  

Now suppose that the actual state of stress is located on the boundary surface f, so that 
( , ) 0f qσ = . Two different situations can arise:  

Case 1) 0   and   0   0f fλ λ= < ⇒ =  2.6 

It follows again that 0plε = , 0q = and elε ε= . This type of response is called unloading 
from a plastic state; 

Case 2) 0   and   0f fλ = =  2.7 

In Case 2, equation 2.5 is automatically satisfied, but two further cases are possible: 
 

I. if 0λ = , (in addition to 0f = ) we have the so-called neutral loading, since 
no plastic strains arise even if we are in a plastic state;  

 
II. if 0λ >  plastic strains arise and we have both 0plε ≠ and 0q ≠ ; this latter 

case is called plastic loading. 
 

It is worth noting how any situation in which ( , ) 0f qσ >  would violate conditions 2.4, so 
this possibility has not been considered.  

From the consistency condition 2.5 we can write the time derivative of f  using the 
chain rule: 

 

 :

    : :

    : : : : 0

pl

f ff q
q

f fC q
q

f f g fC C h
q

σ
σ

ε ε
σ

ε λ
σ σ σ

∂ ∂
= + ⋅

∂ ∂
∂ ∂⎡ ⎤= − + ⋅⎣ ⎦∂ ∂

⎡ ⎤∂ ∂ ∂ ∂
= − + ⋅ ≤⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 2.8 

 

Assuming that : : 0f g fC h
qσ σ

⎡ ⎤∂ ∂ ∂
+ ⋅ >⎢ ⎥∂ ∂ ∂⎣ ⎦

, it follows: 
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: :

0    
: :

f C
f

f g fC h
q

ε
σλ

σ σ

∂
∂= ⇔ =

∂ ∂ ∂
+ ⋅

∂ ∂ ∂

 2.9 

where : / 2x x x= ⎡ + ⎤⎣ ⎦ denotes the ramp function, equal to zero if x is negative, otherwise 
equal to x itself.  

This gives a mathematical explanation of the neutral condition: λ is zero if and only if 
the numerator of 2.9 is equal to zero, i.e. if the scalar product defined by the elastic tensor C 
between the normal to f and the strain rate is zero, thus implying a 90° angle between the 
normal to f and the ε tensor.  

Assembling 2.1 and 2.2 we obtain: 

 : :pl
gC Cσ ε ε ε λ
σ

∂⎡ ⎤⎡ ⎤= − = −⎣ ⎦ ⎢ ⎥∂⎣ ⎦
 2.10 

Substituting in 2.10 the expression of λ obtained in Eq. 2.9, we can express the increment of 
stress in rate form in terms of total strain rate as: 

 :epCσ ε=  2.11 

where epC is the so-called tensor of tangent elastoplastic moduli given by the expression: 

 

                                        if 0

: :
   if 0

: :

ep

C
g fC CC

C
f g fC h

λ

σ σ λ

σ σ σ

=⎧
⎪ ∂ ∂⎪ ⊗= ⎨ ∂ ∂− >⎪ ∂ ∂ ∂

+ ⋅⎪
∂ ∂ ∂⎩

 2.12 

Note that epC is in general unsymmetric, but comes to be symmetric if:  

 g f
σ σ

∂ ∂
=

∂ ∂
 2.13 

that is referred as associative flow rule, i.e. the normal to the plastic potential has the same 
direction than the normal to the yielding surface. 
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2.1.1 Extended  Mohr Coulomb (EMC) 
Considering the outline of elastoplasticity given in Section 2.1, we are now ready to describe 
the main features of the elastoplastic models used in this work.  

The first consitutive model stems from the well known Mohr-Coulomb (MC) failure 
criterium: the Extended Mohr-Coulomb elastoplastic model has been developed by 
considering a yielding surface similar to the general MC line in addition to a flow rule and a 
hardening law. 

As it is well known, MC model assumes that failure occurs when tangential stress in a 
point reaches a limit value expressed in terms of normal stresses. The classical formulation 
of the model is given by Equation 2.14, and in plane ,τ σ as: (Fig. 2.1) 

 tan cτ σ ϕ= +  2.14 

 
Fig. 2.1   Mohr-Coulomb failure criterium (Hibbitt et al., 2003). 

In EMC, the failure surface is given by the equation: (Fig. 2.2) 

 ( ), tan 0mcF R q p cφ ϕ= Θ − − =  2.15 

with: 

 ( ) 1 1, sin cos tan
3 3 33 cosmcR π πφ φ

φ
⎛ ⎞ ⎛ ⎞Θ = Θ + + Θ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 2.16 

where Θ  is the deviatoric polar angle (Chen and Han, 1988), φ  Is the slope of the failure 
line in / mcp R q⋅ plane and c  soil cohesion.  

Variables q and p are, respectively, stress deviator and effective mean stress, as 
commonly defined in soil mechanics. 
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Fig. 2.2   Mohr Coulomb yield surface in meridional and deviatoric planes (Hibbitt et al., 2003). 

Plastic potential function is a smooth elliptic function given by: (Ménetrey and Willam, 
1995) 

 ( ) ( )
2 2

0 tan tanmwG c R q pε ϕ ψ= + −  2.17 

in which mwR  is a function of Lode’s angle and of a out-of-roundness parameter influencing 
the shape of the failure surface in the deviatoric plane; ψ  is the dilatancy angle; 0c  is the 
initial cohesion yield stress; ε  is a parameter, referred to as the eccentricity, that defines the 
rate at which the function approaches the asymptote, provided that the flow potential tends to 
a straight line as the eccentricity tends to zero.  
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Fig. 2.3   Menétrey-Willam flow potential in the deviatoric plane. 

This flow potential, which is continuous and smooth in the meridional stress plane, ensures 
that the flow direction is uniquely defined in this plane (Fig. 2.3). The function 
asymptotically approaches a linear flow potential at high confining pressure stress and 
intersects the hydrostatic pressure axis at 90°. A family of hyperbolic potentials in the 
meridional stress plane is shown in Fig. 2.4. 

 

 
Fig. 2.4   Family of hyperbolic flow potentials in the meridional plane (Hibbitt et al., 2003). 

The hardening law has to be provided by the user as tabular data in the input file, and the 
unique hardening parameter is the cohesion yield stress, which is assumed to be dependent, 
by default, only on the equivalent plastic strain, defined as: 

 1 :pl pld
c

ε σ ε= ∫  2.18 
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In the elastoplastic model a linear elastic behaviour of the soil is assumed until the critical 
line is reached, so that an estimate of the values of Young’s modulus and Poisson ratio, E 
and ν, have to be provided by the user.  

The use of EMC model requires therefore the identification of six parameters: 
φ  : slope of the failure curve in p - mcR . q  plane (classical friction angle);  
ψ  : dilatancy angle;  

0c  : initial cohesion stress, corresponding to zero plastic strains; 
E  : Young’s modulus;  
ν  : Poisson ratio.  
 

Other constitutive parameters, likeε and the out-of-roundness parameter are not calibrated 
but the default value proposed by ABAQUS is accepted, due to their minor influence and the 
difficulties in their identification without carrying out specific tests. 
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2.1.2 Simplified Sinfonietta Classica (SSC) 
The second elastoplastic model considered for this study is derived form the model 
“Sinfonietta Classica” proposed in the ‘80s in (Nova, 1988) and particularly suitable for 
modeling the mechanical behaviour of sands and clays.  

Main ingredients of the original model are the constitutive functions, the yield 
function f (Eq. 2.19) and the plastic potential g (Eq. 2.20): 

 ' 93 ( 3) ln ( 1) 2 3
4c

pf J J
p

β γ γ η γ η= − + − ⋅ − ⋅  2.19 

 ' 99( 3) ln ( 1) 2 3
4g

pg J J
p

γ γ η γ η= − + − ⋅ − ⋅  2.20 

where 'p is proportional to the first invariant of the effective stress tensor; the 
preconsolidation pressure cp  is the hardening parameter, the unique internal variable of the 
model; gp is the parameter corresponding to cp for the plastic potential whose identification 
is unnecessary since the plastic potential g is involved in the calculations only through its 
derivatives; 2J η  and 3J η  are, respectively, the second and the third invariant of the stress 
ratio tensor, defined by the ratio between the effective stress deviator and the first invariant 
of the effective stress tensor; γ  is a parameter related to M, the slope of the limit surface in 
q/p’ plane and to the critical friction angle CVφ′ .  

It can be observed that, in general, the normality rule (f ≡ g) applies only if 3β = . 
The evolution law of cp  is ruled by the full plastic strain tensor, and is given in 

integrated form by: 

 
3

0
( ) 2 3

exp
p
rs

c c
p

tr J e J e
p p

B
ε ξ ψ⎡ ⎤+ +

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 2.21 

where 0cp  is the initial value of cp , and 2J e , 3J e  are the second and third invariants of the 
plastic strain deviator; pB  is the plastic logarithmic volumetric compliance, andξ ,ψ are 
parameters involved in the determination of the friction angle in both compression and 
extension, and in the definition of dilatancy at failure. 

The elastic behavior is modeled in a non-linear rate form introducing an hypoelastic 
law that relates stress and strain in rate form by mean of a stress depending compliance 
matrix.  

A simplified version of Sinfonietta Classica has been herein proposed: only the 
dependance on second and third invariant is kept, so that functions f and g become: 
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 ' 93 ( 3) ln ( 1) 2
4c

pf J
p

β γ γ η= − + − ⋅  2.22 

 ' 99( 3) ln ( 1) 2
4g

pg J
p

γ γ η= − + − ⋅  2.23 

 
Fig. 2.5   Shape of f and g in q/p’ plane. 

The evolution of the hardening parameter cp is expressed in differential form by: 

 ( )0 ( ) :pc
c rs rs rs

p

p
p tr e e

B
ε ξ= +  2.24 

where rse  is the rate form of the plastic strain deviator, defined as: 

 3x3( ) Irse trε ε= − ⋅  2.25 

This kind of formulation will be helpful when integrating the mathematical model in the 
framework of implicit methods in order to obtain the stress update within each iteration.  

With these assumptions in mind, the relation between γ  above defined and M , slope 
of the limit surface in q-p’ plane, is given by: 

 
2

2

9
3

M
M

γ −
=

−
 2.26 

Equation 2.26 stems from the differentiation of the plastic potential with respect to the 
variables of stress, so that: 

 
1 2 3

0g g g
σ σ σ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 2.27 
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pg pc 
p’ 
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which corresponds to the critical state, as determined by Schofield and Wroth.  
In equation 2.27 the increment of plastic volumetric strains is therefore set to zero, 

according to the definition of plastic strains with respect to the gradient of the plastic 
potential.  

The limit conditions in triaxial compression and extension are then given by: 

 ( ) ( )2 23 3 ( 1) 3 1 0
36

pl

pl

εξγ γ η γ γη η
ε

⎛ ⎞− − − + − − =⎜ ⎟
⎝ ⎠

 2.28 

 
The SSC model allows to take into account a value of dilatancy at failure fd , which can be 
derived from the limit condition: 

 f 3
6

pl

pl

d
εξ
ε

= −  2.29 

the value of fd is therefore related to the constitutive parameterξ  which,  in addition to γ , 
governs the value of the limit stress ratio and thus the apparent friction angle.  

From equations 2.28 and 2.29 it is evident thet neither the limit stress ratio, i.e. the 
friction angle, nor the dilatancy at failure are affected by the confining pressure. 

The elastic behaviour of the model is supposed to be hypoelastic. This assumption 
derives from the original SC model, togheter with its incremental formulation: 

 ( )el eDε σ σ ′=  2.30 

As it is well known, this kind of formulation, which is very convenient for its simplicity and 
its capability to model the unloading behaviour in triaxial tests, has serious shortcomings 
due, from a mathematical point of view, to the need of an integration of the law for each 
loading/unloading step.  

From a theoretical point of view, since hypoelasticity is not based on the definition of 
an elastic potential, by choosing a convenient stress cycle it is possible to obtain energy from 
the sample, which is evidently a nonsense. We can therefore assume that the model would 
not be able to model any cyclic behaviour.  

To overcome both this shortcomings, the solution could be the choice of a different 
approach for the elastic phase of the model, like hyperelasticity (e.g.(Borja et al., 1997)) in 
which the stress/strain relation is given through the derivatives of a free energy function, thus 
allowing both the fast resolution of the elastic step (derivatives can be given in closed form) 
and the preservation of the physical constraints.  

Moreover, a hyperelastic behaviour has been already assumed with good results in 
more advanced models derived from SC ((Tamagnini et al., 2002),(Nova et al., 2003)). In 
this work, the original hypoelastic relation has been kept because only monothonic loading 
schemes will be studied. 
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2.2 Hypoplasticity 

A particular class of incrementally non–linear models which has received special attention in 
recent times is the so–called theory of hypoplasticity, as defined in (Kolymbas, 1991).  

A general outline of the theory was laid down by Kolymbas (1991), and several 
review papers followed thereafter, the most recent of which are (Wu and Kolymbas, 1999) 
and (Tamagnini et al., 2000). The constitutive equation of an inviscid hypoplastic material is 
characterized by the following standard functional form: 

 ( , ) ( , )k kσ σ ε σ ε= +A b  2.31 

where the fourth–order tensor ( , )kσA and the second–order tensor ( , )kσb are suitable 
tensor–valued functions of the current stress state σ and, possibly, of a set of additional 
(internal) state variables k , accounting for the effects of previous loading history.  

The first term on the right hand side of equation 2.31 is linear in the strain rate, and is 
formally equivalent to the hypoelasticity theory proposed in (Truesdell, 1956). The 
incremental non-linearity of the constitutive equation is concentrated in the second term, 
where the rate of deformation appears only through its norm.  

The particular structure of the basic constitutive equation 2.31 of hypoplastic models 
allows a simple and effective graphical illustration of incremental non–linearity.  

This can be done by employing the so–called stress response envelopes (SRE), first 
proposed by (Gudehus, 1979) as a tool for visualizing the properties of a given constitutive 
equation in rate–form.  

A stress response envelope is defined as the image in the stress rate space of the unit 
sphere in the strain rate space, under the map defined by the constitutive equations.  

In the general case, a SRE is a “surface” in a six–dimensional space.  
However, in the particular case of axisymmetric (triaxial) loading, the number of 

independent stress and strain variables reduces to two, and a convenient graphical 
representation of the SRE can be given in the so–called Rendulic plane of stress 
rates: : 2a rσ σ , where aσ , rσ are the axial and radial (principal) stresses, respectively (Fig. 
2.6) 
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Fig. 2.6   Stress Response Envelope for axysimmetric loading. 

 
Fig. 2.7   Graphical interpretation of hypoplastic constitutive equation: a) unit circle in the strain rate 

plane; b) effect of the linear term; c) effect of the non–linear term. 

Upon the map defined by equation 2.31, the SRE of a hypoplastic material is obtained as 
sketched in Fig. 2.7. The effect of the linear operator A is to transform the unit circle into an 
ellipse centred at the origin of the stress rate plane. The subsequent application of the 
nonlinear term ( , )kσ εb , in which only the strain rate norm is involved, results in a 
translation of the ellipse along the direction defined by tensor ( , )kσb . In its final 
configuration, the SRE is non–symmetric with respect to the origin of the stress rate space. 
This lack of symmetry expresses in graphical terms the concept of incremental non–linearity, 
as expressed by equation 2.31: in fact, choosing 1 *ε ε= , 2 *ε ε= − , incremental non- 
linearity requires that: 

 ( *) ( *)F Fε ε≠ − −  2.32 

A(σ,k) b(σ,k) 
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i.e., a full reversal of strain rate does not correspond to a complete reversal of stress rate. 
Clearly, this is possible only when the SRE is non–symmetric with respect to the origin of 
the stress rate space. 

Starting from the basic mathematical structure of equation 2.31, two different 
formulations of hypoplasticity have been developed over the last decade, with the specific 
objective of modeling the behavior of granular, coarse–grained materials.  

The first one, referred to in the following as K–hypoplasticity, was developed in 
Karlsruhe after the pioneer work of Kolymbas, see e.g. (Kolymbas and Wu, 1993). The 
second originated in Grenoble from the work of Chambon and Desrues  under the general 
name of CLoE hypoplasticity (Chambon et al., 1994).  

Although these two approaches share a number of similarities, the motivations for 
their independent development were different in various respects. As a result, some 
important differences are apparent in their original formulation, as well as in their respective 
subsequent developments.  

2.2.1 CLoE–hypoplasticity 
The origins of CLoE hypoplasticity — where the acronym CLoE stands for Consistance et 
Localisation Explicite — can be traced back to the researches by Chambon and Desrues on 
strain localization in incrementally non–linear materials ((Desrues, 1984),(Chambon and 
Desrues, 1985),(Desrues and Chambon, 1989)). In the development of CLoE model, the 
following basic assumptions have been introduced to derive specific functional forms for the 
tensors A and b in equation 2.31:  
1) To keep the formulation as simple as possible, the set of state variables is limited to the 
Cauchy stress tensor. 
2) According to the experimentally observed behavior of granular materials, the domain of 
admissible stress states is bounded by a surface S, called limit surface, formally defined by 
means of a scalar function ( )ψ σ , as function of the set of stress state σ for which: 

 ( ) 0ψ σ =  2.33 

 
3) The constitutive equation 2.31 is invertible at all the stress states inside the limit surface. 
Due to assumption (1), tensors A and b admit the following representation as a 6x6 matrix 
and a six–components column vector in the reference frame of the principal stress directions: 

 

1111 1122 1133 11

2211 2222 2233 22

3311 3322 3333 33

1212

1313

2323

A A A 0 0 0 b
A A A 0 0 0 b
A A A 0 0 0 b

A    b=
0 0 0 A 0 0 0
0 0 0 0 A 0 0
0 0 0 0 0 A 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 2.34 
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Assumptions (1) and (2) imply that for any stress state on S, the stress rate predicted by 
equation 2.31 is directed inside the limit surface, regardless of the direction of the rate of 
deformation: 

 0ψ σ
σ

∂
⋅ =

∂
 2.35 

The above condition has a direct geometrical interpretation in terms of response envelopes: 
the response envelope corresponding to a stress state on the limit surface must be tangent to  

( ) 0ψ σ = . This condition represents a fundamental constraint in the development of 
functional forms for the tensors A and b, known as consistency condition (Chambon et al., 
1994). 

The strategy adopted to develop specific functional forms for the constitutive tensors 
A and b in the first generation of CLoE models is based on the interpolation procedure 
described in the next paragraph.  

A number of special loading paths, known as basic paths, are defined along which the 
material response to particular loading conditions is described via suitable response functions 
interpolating experimentally observed data.  

For each stress state, a set of image points is then defined along the basic paths, for 
which A and b can be easily determined by differentiating the response functions (Fig. 2.8).  

The actual values of A and b are then evaluated by interpolating the corresponding 
tensors at the image points, based on the current values of Lode angle and normalized 
deviatoric stress  q/qL, being qL the deviator stress on the limit surface for the current values 
of mean stress and Lode’s angle.  

In performing the interpolation, the consistency condition at the limit surface, 
equation 2.35, has to be enforced through a suitable rotation of tensor A. To ease the 
calibration procedure and to link material constants to commonly observed features of soil 
behavior, the basic paths are selected among those which are experimentally accessible by 
means of standard laboratory equipments i.e., triaxial compression and extension; isotropic 
compression starting from isotropic and anisotropic stress states.  

 
Fig. 2.8   Limit surface and image points for CLoE models. 
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These routine laboratory tests can provide informations on all the unknown components of 
the constitutive tensors except for the so–called out–of axis shear moduli A1212, A1313 and 
A2323 of the representation in equations 2.34.  

This approach presents the advantage of directly linking the constitutive functions to 
the observed material behaviour along an as large as possible set of loading paths, in contrast 
with common practice in the development of elastoplastic constitutive models, where the 
mathematical formulation of the constitutive equations is generally based on experimental 
investigation on a much more limited number of stress–paths.  

However, this advantage is paid in terms of a relatively large number of parameters 
required to describe the response functions, and complexity of the interpolation procedure, 
which does not allow to define an explicit form for the functions A(σ) and b(σ). 



 

 



 

 

3 Implementation of the models 

Since computers have become more and more powerful, researchers have been developing 
analysis techniques to take benefit of computational capabilities of modern computers.  

In particular, in engineering, the FE method has been developed, thus allowing 
practising engineers as well as researchers to solve even complex boundary value problems.  

The reliability of the results obtained through FE analyses is strongly influenced by 
the choice of the constitutive model for the materials involved in the problem.  

In geotechnics the main material involved is the soil. Unlike in structural or 
mechanical engineering, where materials are often clearly identified by more or less simple 
constitutive relations, the “soil” material is very complex and can be studied under many 
points of view, depending on the particular aspects involved in the specific analysis.  

For example, soils can show a completely different behaviour depending on their 
physical characteristics (e.g. grain size) or their particular state (denser or looser).  

The formulation of the constitutive relation for the soil is therefore influenced by the 
characteristics of the material to be modelled. Along last decades, a high quantity of 
constitutive models as well as algorithms have been developed, in order to make possible the 
use of such mathematical laws in FE analyses.  

In most cases, the implementation of a constitutive law requires the resolution of 
systems of differential equations, thus requiring robust numerical integration algorithms 
which stems from the theory of differential calculus.  

Such numerical methods can be summarized in explicit and implicit methods: each 
one of the two methods has its advantages and shortcomings: in particular, for the integration 
of the elastoplastic model, the return mapping algorithm was formulated following an 
implicit scheme, while the integration of the CLoE model was carried out in an explicit 
framework.  

Since the third constitutive model (EMC model) used for the soil was already 
embedded in the library of constitutive models of the ABAQUS code, it will not be 
considered within this chapter, completely devoted to the description of the implementation 
strategies followed for SSC and CLoE models. 
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3.1 Implementation of the SSC model 

In the classical elastoplastic formulations, total strains are typically splitted into elastic and 
plastic deformations.  

Furthermore, main ingredients of every elastoplastic formulations, are the yield 
function (Eq. 2.22), which allows to distinguish between elastic and elastoplastic domain, the 
plastic potential (Eq. 2.23) whose gradient is proportional to the plastic deformations through 
the scalar λ and the flow rule, which relates the hardening parameter cp to plastic strains as 
defined in equation 2.24. 

The implementation has been carried out within the well-established elastic predictor 
(EP) – plastic corrector (PC) framework: starting from the initial state of strain and stress, 
given a strain increment, the stresses are updated, for each Gauss-point, assuming that the 
first step is perfectly elastic, i.e. the increment of plastic strains is set to zero, so that the 
hardening parameter is left unchanged in this first step.  

If the trial state is inside the yield function f, the stress is updated to the trial stress and 
the routine ends, while if the final state is outside or on the yield function (i.e. f ≥ 0), the 
plastic corrector procedure is initialized, passing as initial state (trial state) the results of the 
elastic predictor.  

The whole EP process is summarized in Box 3.1. 
 

 
Box 3.1   Elastic Predictor (EP). 

1. Increment of total (elastic) strain n+1ε starting from equilibrated nth state:  
n n n+1,      , 0plσ ε ε ε→ =  

2. Evaluation of trial state of stress n+1
trσ through elastic relation 
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It is worth noting how, due to the hypoelastic nature of the elastic relation of the 
model, as described in Chapter 2, an integration procedure is necessary even for the 
resolution of a simple elastic step.  

For integrating the hypoelastic equation 2.30, a general scheme has been used, that is 
the Generalized Midpoint Method (GMM-α), as described in (Tamagnini et al., 2000), and 
briefly summarized below. 

The general scheme of GMM-α method can be written as:  

 n+1 n 1 n+α n+1( )eDσ σ ε−= + ∆  3.1 

where  

 
n+α n n+1

n+α n+α

: (1 )
( ) : ( )e eD D
σ α σ ασ

σ

= − +

=
 3.2 

with [ ]0,1α ∈ . If 0α = the method degenerates into the weel-known Euler explicit method, 
while, if 1α = we obtain the classical backward Euler method.  

In the present case it has been chosen a value 0.5α = , which corresponds to the 
Crank-Nicolson method, which is proven to be second order accurate. A rigorous non-linear 
accuracy and stability analysis of the GMM-α algorithms for hardening plasticity and 
viscoplasticity has been presented in (Simo and Govindjee, 1986) 

For any givenα , the evaluation of the stress increment requires an iterative procedure 
to determine the generalized midpoint stress. In order to improve the algorithm accuracy, a 
substepping scheme is adopted in which the given strain increment is subdivided in substeps.  

In this case, a simple substepping scheme with a constant substep size is employed, 
thus 1/k sT n∆ = . A complete description of the GMM-α algorithm is given in (Hairer and 
Wanner, 1991), and is summarized in Box 3.2. 

At the beginning of first substep ( 1k = ), the stress is initialized to the converged 
value at time station tn.  

Then, at the jth iteration of the generic substep [ ]1, sk n∈ , the generalized midpoint 

stress ( )j
k ασ + is evaluated according to step 4.  

Note that if 1j = the update of the midpoint stress is based on the stress increment 

1kσ −∆  at the end of previous substep, while the stress increment at the previous iteration 
( 1)

1
j

kσ −
−∆  is used otherwise.  

A new value of the stress increment is therefore computed in step 5, starting from the 
values of the elastic tensor at ( )j

k ασ + . 
The iteration process is repeated until a relative norm of the residual ( )jr , defined as 

in step 6, is less then a prescribed tolerance TOL, or the iteration counter j is equal to a 
prescribed maximum number of iterations JMAX. 
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Box 3.2   Genetalized Midpoint Method (GMM-α) (Tamagnini et al., 2000). 

 
At the end of the integration of the elastic relation, the elastic predictor ends with the test at 
point 2 in Box 3.1. If necessary, the PC routine is initialized: with the hypotheses of constant 
total strain, the trial state of stress is mapped back to the yielding surface, which is changed 

1. Initialize substep counter, stress and stress increment: 
1 01      =0k k nk σ σ σ== = ∆  

 

2. Compute substep size: 1
k
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∆ =  

 
3. Initialize iteration counter: 1j =  
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5. Compute stress increment according to equation (3.1): 

( ) ( )
1( )j j

k k e k nT D ασ ε+ +∆ = ∆ ∆  
 

6. Compute residual for current iteration: 
( )
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( ) ( 1)

  if  1
:

 otherwise
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j
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7. Check for convergence: 
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:  = ,  GOTO 8
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8. Update stress tensor: 
1k k kσ σ σ+ = + ∆  

 
9. Check for the end of the substepping: 

1 1:  = ,  END
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by updating the value of the hardening parameter accordingly to the evolution of plastic 
strains.  

The actualization of stress and strains is achieved by means of return mapping 
equations, which consist in the definition of a residual vector and a Jacobian matrix within a 
local Newton-Raphson iterative process. In this work, while always the same procedure has 
been chosen for the resolution of the EP, that is a Generalized Midpoint Method (GMM) 
(Tamagnini et al., 2000), two different strategies have been adopted and compared for the 
formulation of the PC problem. The description of the two strategies will be the object of 
next paragraphs. 

Regardless the specific strategy chosen for the return mapping equations, the general 
scheme for the resolution of the problem is the discretization of the following system of 
differential equations, which governs the PC problem: 

 

( )

1

0

     (a)

   (b)

     (c)

( ) : = ( , )     (d)

  ( , ) 0     (e)

el pl

e el

pl

pc
c rs rs rs c

p

c

D
g

p
p tr e e h p

B

f p

ε ε ε

σ ε

ε λ
σ

ε ξ λ σ

σ

−

= −⎧
⎪

=⎪
⎪ ∂⎪ =⎪
⎨ ∂
⎪
⎪ = +
⎪
⎪ =⎪⎩

 3.3 

Equation (a) states the decomposition of total strain in elastic and plastic part, while (b) is the 
hypoplastic relations (see 2.1.2 for the description of the SSC model).  

Equation (c) and (d) are the evolution of plastic strains and of the hardening 
parameter, respectively. In (d) the evolution of cp is expressed both in terms of evolution of 
plastic strains and in terms of plastic multiplier λ and hardening function h; (e) comes from 
the Kuhn-Tucker conditions 2.4 for the PC problem, where λ is different from zero. 

Due to the strongly non-linear nature of the system 3.3, the integration of the return 
mapping equations is performed by an implicit Backward Euler scheme, formulated in terms 
of stress (approach #1) and strain (approach #2) components.  

For both the formulations, however, the return mapping equations require the 
vanishing of a residual vector R via a full Newton-Raphson iterative scheme represented in 
Box 3.3. 

A difficulty in applying the scheme is the necessity to formulate the tangent matrix 
for the local problem, since it involves the partial derivatives of the equations f, g and h with 
respect to the unknowns of the problem, which are the four components of stress (only the 
plane state is here considered), the hardening parameter and the increment of the plastic 
multiplier λ∆ .  

 In scientific literature many examples can be found about return mapping schemes 
formulated in terms of stress (e.g. (Lourenço, 1995)) or strain (e.g.(Tamagnini et al., 2002)) 
components. 
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Box 3.3   Plastic Corrector (PC). 

 
 

3.1.1 Formulation F#1: integration in terms of stress 
System 3.4 describes the discretization of the plastic corrector problem in terms of stresses: 

 

1 1 1 1 1

1 1 1 1

1 1
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+ + + + +

+ + + +
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⎧ = − ∆
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= + ∆⎨
⎪ =⎩

 3.4 

The unknowns of the problem at time tn+1 are the stress components, the value of cp  and the 
plastic multiplier λ∆ , while the trial stress components trσ (as results of the elastic predictor) 
and the value of the hardening parameter (unchanged during the elastic predictor) are known 
quantities.  

The residual R and the Jacobian matrix J of the procedure are defined as: 

(Initial state of stress from the solution of the EP – see Box 3.1) 
 
...3. DO WHILE (CONV  ≠ true):  

a. Evaluate the Jacobian 
RJ
x

∂
=

∂
  

b. Jth increment of the unknown vector: 
1

1 1;    j j
n n

Rx R x x x
x

δ δ
−

+ +

∂⎛ ⎞= = +⎜ ⎟∂⎝ ⎠
 

c. Convergence check (tolerance tolRETM=1.10-12): 
 

CONV = true 
 
IF 1( ) ( )nR k x x tolRETMδ+ + >  
  THEN CONV = false 
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 3.6 

 
The Jacobian matrix is here computed by means of a numerical approximation.  

Namely, a centered difference scheme has been chosen, which has second order 
accuracy, and can be described as:  

 1 1( ,.., ,... ) ( ,.., ,... )
2

i j n i j ni

j

R x x x R x x xR
x

ϑ ϑ
ϑ

+ − −∂
=

∂
 3.7 

the Jacobian matrix is therefore computed, element by element, as numerically approximated 
jth derivative of the ith component of the residual vector.  

The stepsize ϑ  chosen for the implementation is 10-7, which is a reasonable value 
considering the machine precision (IEEE double) and the general assumptions (Pérez-Foguet 
et al. 2000)  for the choice of the stepsize for the centered differentiation ϑ = (macheps)1/3  

3.1.2 Formulation F#2: integration in terms of strain 
The second approach is based on a different formulation of the first equation of 3.5: stress 
vector is replaced by strain vector, while the unknowns remain n+1σ , n+1

cp  and n+1λ∆ . 
Residual vector and Jacobian matrix, therefore, can be written as: 
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 3.8 
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 3.9 

The derivatives of f, g, and h are computed by mean of a symbolic manipulator 
(MATHEMATICA) in order to obtain a closed-form expression that can be used in the 
FORTRAN code to build the exact expression of the matrix J, thus allowing a further 
comparison possibility with the previous approach, in which the components of the matrix 
were numerically computed.  

3.1.3 Consistent tangent operator 
The resolution of boundary value problems by a FE code requires the design of a mesh of 
finite elements and the solution of a static equilibrium problem expressed by the weak form 
of the balance of momentum equation.  

To this end, the definition of a consistent tangent matrix that allows the achievement 
of quadratic convergence in the global Newton-Raphson iteration is needed.  

A crude approximation of the tangent matrix induces time-consuming analyses and a 
worse overall performance of the FE model.  

It is worth noting, however, that the formulation of the consistent tangent matrix does 
not influence neither the final results of the analyses (if reached) nor the performance of the 
implementation at Gauss-point level.  

In F#1 the matrix is evaluated by a rough approximation by perturbating the strain 
components with a small value of strain increment (order of magnitude: 10-8) thus giving a 
slow rate of convergence in the global iterations. 

On the contrary, in F#2, the different structure of the return mapping scheme allows 
to define the tangent matrix for an elastoplastic step in a more effective way (Lourenço, 
1995): 

 1
4 4xJσ

ε
−∂∆

=
∂∆

 3.10 

where the RHS is the upper left 4x4 matrix extracted from the Jacobian of the return 
mapping algorithm at the end of the converged local iteration. How these different 
approaches in the computation of the tangent matrix will be shown in the next section 3.1.4. 

3.1.4 Simple 1-element analysis : simulation of triaxial tests 
Following the two proposed schemes, in order to test the behavior of the routine at single 
Gauss-point level, a standalone FORTRAN routine has been written.  
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This first algorithm has been developed with debugging purposes only, because in 
order to solve even the simplest boundary value problem, the implementation of the routine 
within a FE code is needed.  

To this end, a commercial FE code has been chosen, ABAQUS rel.6.4, and the 
original Fortran code has been “translated” into the subroutine umat to be passed to 
ABAQUS as user-defined material routine.  

The time stepping control is splitted in two: a simple procedure in subroutine umat 
controls the maximum time increment, while the decision whether increase the time 
increment is assigned to ABAQUS. Inside umat, the maximum number of substeps is 
computed by:  

 valD dtimesubs
tol
⋅

=  3.11 

where valD represents the Euclidean norm of the total strain increment vector at the 
beginning of the current increment, tol is a tolerance parameter (tol = 10-5) and dtime is the 
current time increment.  

If subs results greater of equal than the maximum number of substeps allowed, the 
analysis is restarted with a new time increment reduced to the 25%.  

It is worth noting as a time stepping procedure should not be necessary, since the 
integration scheme is fully implicit, which is proven to be unconditionally stable. Such a 
procedure has however implemented in order to avoid a resulting trial stress state excessively 
far from the initial yield surface because of the exponential form of the elastic law, that 
would give serious numerical problems. 

For checking the effectiveness of the two implementations some simple analyses have 
been carried out.  

The single element chosen for the analyses is shown in Fig. 3.1: a 4 noded 
axisymmetric CPE4, isotropically consolidated and then subjected to triaxial tests simulated 
by applying a downward vertical displacement (total vertical strain of 20%) in 
correspondance of the top face of the element.  

For all the calculations, the constitutive parameters of the model have been adopted as 
shown in Table  3.1. 

For the simulation of the triaxial test (TXCID) on the normally consolidated soil, the 
finite element has been isotropically consolidated up to 100 kPa, value assumed for the 
confining pressure throughout the whole test.  

To the same value has been set the preconsolidation parameter, so that the stress state 
initially lies on the initial yield surface. As far as the simulation of an overconsolidated soil is 
concerned, the initial isotropic pressure was 50 kPa, with an initial value for the hardening 
parameter of 500 kPa, thus resulting an initial OCR = 10.  

In Fig.3.2 the results are presented, for both F#1 and F#2, in terms of deviatoric stress 
vs. mean stress, deviatoric stress vs. total vertical strain. In Fig. 3.3 the analysis results are 
given in terms of volumetric versus deviatoric strain.  
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: confining pressure 

: displacement 

: vertical constraint 

 

Table  3.1   Numerical values for the material parameters.  

 
 

 

 

 

Fig. 3.1   Axisymmetric 4-noded element CAX4 for FE simulations of triaxial tests. 

 
 
 
 

Fig. 3.2   F#1 and F#2, OCR=1 and OCR=10 TXCID tests: Stress path with initial yield surface and 
critical state line (a), deviatoric stress vs. axial strain (b). 
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For these simple tests the failure condition identifies the critical state, since the parameter ξ, 
which is related to dilatancy at failure through the 2.29, has been set to zero.  

As expected, the curves shown in Fig. 3.3 asymptotically tend to an horizontal line, 
thus evidentiating null volumetric strain rate when the CSL is reached. 

However, the choice of a suitable value for ξ will allow to take into account of a 
dilatancy angle different from zero. 

 
 

 

Moreover, an undrainded triaxial test has been simulated, whose results are presented in Fig. 
3.4. In order to simulate the pore pressure, a different element type has been chosen: the 4-
noded axysimmetric element with pore pressure CAX4P. 

As it was expected, the total stress path (TSP), represented by the straight line in the 
left plot of Fig. 3.4  is different from the effective stress path (ESP, curved line), and the 
difference is given by the water pressure.  

As for deviatoric stress vs. axial strain, the curve obtained well reproduces the exected 
real behaviour of NC soil subjected to a triaxial undrained test. 

From the observation of the results, it is clearly apparent that the two formulations of 
the return mapping, F#1 and F#2, give almost exactly the same results, both in terms of 
stresses and volumetric strains vs. axial strains. 
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Fig. 3.3   F#1 and F#2, OCR=1 and OCR=10 TXCID tests: volumetric 
vs. deviatoric strain. 
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Fig. 3.4   F#1 and F#2, TXCIU test: TSP and ESP, deviatoric stress vs. axial strain. 

In order to investigate about the computational time requested by the two routines, one 
among the aforementioned simulations has been chosen, i.e. the TXCID test on a NC soil.  

In Table  3.2 the highest residual forces for the first time increment in which an axial 
strain of 2.10-4 are given: the analysis with F#1 converges after 7 iterations, while only 4 
iterations are required for F#2.  

Moreover, the convergence rate is faster in F#2, in which the material tangent matrix 
has been computed consistently with Newton’s method starting from the Jacobian matrix of 
the return mapping algorithm.  

However, it can be observed that the final total time is slightly higher than the time 
needed using F#1, this can be explained considering the different structure of the FORTRAN 
routines, requiring the evaluation of a greater number of equations in F#2. As a further 
remark, it is worth saying that for all the analyses the ABAQUS convergence criterion on the 
residual forces has been left unchanged, to the default value of Rn

α = 5.10-3. 
 
 

Iteration # F#1 (CPU=60.2 s) Iteration # F#2 (CPU=72.1 s) 

..4 -4.35 1 -35.2 

5 -2.41 2 -6.40 

6 -1.35 3 -0.935 

7 -0.755 4 -0.129 

Table  3.2   TXCID test, I increment: residual forces for F#1 and F#2. 
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As a further confirmation of the results, the efficiency of the operator has been tested for an 
analysis involving a larger set of elements; to this end a FE mesh composed of 120 
axisymmetric 4-noded CAX4 elements, has been built.  

The adopted numerical values for the parameters of the model are the same chosen for 
the preliminary tests (Table  3.1) and boundary conditions have been set as shown in Fig. 
3.5: horizontal  displacements are prevented along the right side, while vertical 
displacements are constrained to zero along the bottom side of the mesh. Along the 
centreline of the problem, i.e. the left side of the mesh, boundary conditions are consequent 
to the assumption of axisymmetric condition. 

At this preliminary stage, the results of the simple boundary value problem, are of 
interest only as far as the CPU time needed for the computations, and they must be regarded 
as a benchmark for the constitutive routines.  

  
 
 
The analysis has been performed in displacement control, constraining the downward 
movement of the first 5 nodes at the left-top corner of the mesh, thus simulating the 
behaviour of a circular foundation under a vertical centred load.  

The foundation has not been modelled, and the loading phase has been modelled by 
simply applying a settlement to five adjacent nodes at the top right corner of the mesh. 

The resulting required CPU time (in seconds) has been 3148.8 for F#1 versus 360.43 
for F#2. In this case, the higher efficiency of F#2 is clearly evident. 
 

CL 

Fig. 3.5   FE mesh for an axisymmetric foundation. 
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3.2 Implementation of the CLoE model 

The implementation of the CLoE hypoplastic model has been carried out within the 
framework suggested for the implementation of the K-hypoplasticity (Fellin and Ostermann, 
2002). It has been proved how, for the integration of  incrementally non-linear laws, the best 
approach is the explicit scheme (Tamagnini et al., 2000). Nevertheless, such a strategy 
requires the estimate of the error at each step and, possibly, a substep size automatic control.  

As described in Section 2.2.1, the law is formulated in rate form as: 

 ( , ) ( , )k kσ σ σ ε= +A ε b  3.12 

The first problem to solve is the computation of the updated state of stress starting from an 
equilibrate state and given a strain increment passed by the FE code. Since in CLoE model it 
is impossible to formulate equation 3.12 in a closed form because of the structure of the 
mathematical model, this task has to be accomplished via an interpolation between the values 
assumed by tensors ( , )kσA  and ( , )kσb in particular states of stress, the so-called basic 
stress paths, as described in Section 2.2.1. 

Without going into details about the interpolation procedure, which is widely 
described in (Chambon et al., 1995), and defining T as the stress tensor σ, let us consider the 
differential equation which is a way to represent equation 3.12: 

 ( , )
t

∂
=

∂
T h T D  3.13 

Let us define the temporal rate of the strain tensor as: 

 D
t t
ε ε∂ ∆

= =
∂ ∆

 3.14 

The transformation of the derivative in equation 3.14 in a discrete form is due to the 
particular nature of the computations: only the value of ε at the beginning and at the end of 
the time increment ∆t  is known, while we have no information about the state in the middle 
of the step. 

In order to get the Jacobian matrix (see Section 1.12) needed for the resolution of 
BVPs, equation 3.13 has to be differentiated with respect to the strain increment, which 
yields the variational equation: 

  

 ( , ) ( , ) ,            (0) 0    d d d
dt d d

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂
T T D Th T D h T D
D T D D D D

 3.15 
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Being 0 0( ) ( )t t tσ σ σ∆ = + ∆ − , in order to get: 

 0( ) 1 ( )
t t
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σσ
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∂ + ∆∂∆ ∂
= = ⋅ ∆
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T
D

 3.16 

equation 3.15 has to be solved together with equation 3.13, which can be very difficult in 
closed form. A numerical approximation of equation 3.15 is therefore suggested: 

( ) ( ) ( ( ), ) ( , )

ij

d
dt

ϑ ϑ ϑ
ϑ ϑ
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but, from the definition of derivative: 

 ( ) ,    ( )ϑ ϑ ϑ ϑ∂
+ = + + = +
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TT D T D D D V
D

 3.18 

where V is the standard basis tensor. Consequently, equation 3.17 reads: 

 1 , ( , ) , (0) 0
ij ij
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dt

ϑ ϑ
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 3.19 

From the numerical point of view, the parameterϑ has been chosen as: 

 max(1, ) )machepsϑ = D  3.20 

where macheps denotes the machine precision, which is about 10-16 in IEEE double 
precision. Equations 3.13 and 3.19 are solved numerically and simultaneously following the 
procedure below described. 

3.2.1 Adaptive explicit integration  
The integration of the two differential equations whose solution will give the updated state of 
stress and the local Jacobian of the iteration, is performed through an explicit scheme which 
derives from the forward Euler method. The error and stepsize control is based on a 
Richardson extrapolation.  

All the variables involved in the resolution of equations 3.13 and 3.19 are stored in a 
vector y, so that the equations can be written as: 

 0( ) ( ( )),    (0)  y t F y t y y′ = =  3.21 

An initial time step τ is chosen, so that [ ]0, tτ ∈ ∆ , and two approximations are computed: 

 0 0( )v y F yτ= +  3.22 
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 0 0 0 0( ) ( )
2 2 2

w y F y F y F yτ τ τ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 3.23 

v is the result of forward Euler method with stepsize τ, w is the result of two Euler steps of 
size τ/2. Expanding the exact solution in Taylor series we get: 
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which, thanks to the first of equations 3.21, becomes: 
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We can therefore write: 
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As a consequence, the difference: 
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w v F y F yτ ο τ′− = +  3.27 

is an asymptotically correct estimate for the error. We set: 

 EST w v= −  3.28 

If EST is below the tolerance set for the integration, the stepsize is accepted and the solution 
is the extrapolated value: 

 2y w v= −  3.29 

Further, we enlarge the stepsize in a standard way accordingly to 

 1 min 5,0.9n
tol

EST
τ τ+

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 3.30 

If EST is greater than tol, the step is rejected and repeated with a smaller stepsize 

 1 max 0.2,0.9n
tol

EST
τ τ+

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 3.31 
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In the implementation into ABAQUS code, a more flexible strategy has been adopted for the 
estimate of the error in each iteration: 

 
2

6

1
i i

i
i

w v
w v

s=

⎛ ⎞−
− = ⎜ ⎟

⎝ ⎠
∑  3.32 

with the solution depending weights max( , )i i is w v ATOL= + . The value for the threshold 
ATOL can be supplied by the user. 

 

3.2.2 Validation of the constitutive routine 
As required before trying to solve complex BVPs, it is necessary to assess the reliability of 
the implementation.  

In order to do that, the following procedure has been chosen: as already mentioned, in 
CLoE model some simple stress paths are given a priori, accordingly with the results of 
routine laboratory tests on the material.  

Only two among the basic stress paths have been chosen for the validation: triaxial 
compression and extension.  

The stress-strain and volumetric vs. axial strain curves have been computed in 
analytical way and by reproducing the same test through FE analyses.  

The perfect matching between the two sets of tests is only a necessary condition for 
the effectiveness of the routine, but it would be a sufficient confirmation for the reliability of 
the implementation, since even the simple basic stress path in FE analyses has to be 
computed through the whole interpolation procedure. 

The analytical equations of the CLoE model are given for triaxial compression: 
 

 1
1

a hc a

l hc a

a
c

σ ε
σ ε

= +
+

 3.33 

 2      for v pc a pc a a pca b xε ε ε ε= + <  3.34 

 ( )      for v fc a pc a pcp x xε ε ε= − >  3.35 
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Fig. 3.6   Stress-strain relation in triaxial compression (Chambon et al., 1995). 

 
where, in equation 3.33, the ratio of axial stress on lateral stress is related to the axial strain 
through two constitutive parameters, hca and hcc . In equation 3.34 the volumetric strain is 
related to the axial strain through pca and pcb via a parabola if the axial strain is less than 
another constitutive parameter pcx . The second part of the curve is  followed by the straight 
line of equation 3.35, and the whole curve is plotted in Fig. 3.7. 

 
 
 

 
Fig. 3.7   Volumetric-axial strain for triaxial compression (Chambon et al., 1995). 
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As for triaxial extension, the stress-strain relation is given by: 

 1
1

a he a

l he a

a
c

σ ε
σ ε

= +
+

 3.36 

and shown in Fig. 3.8, while the volumetric-axial strain relation is given by the equations 
3.37 to 3.39 and shown in Fig. 3.9. 

 
Fig. 3.8   Stress-strain relation for triaxial extension (Chambon et al., 1995). 

 [ ]3 2
1 1 1 2    for ,0v a a a a ma b c xε ε ε ε ε= + + ∈  3.37 

 [ ]2                              for ,v e a c my x xε ε= ∈  3.38 

 [ ]4
2( )         for ,v b a c b a t ca x c x xε ε ε= − + ∈  3.39 

 
Fig. 3.9   Volumetric vs. axial strain for triaxial extension (Chambon et al., 1995). 
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The FE model used for validation purposes is the same described in Section 3.1.4 and shown 
in Fig. 3.1. The set of values for the internal variables shown below, coming from the 
calibration for a Hostun RF dense sand , was used: 

 

Table  3.3   Parameters adopted in the validation tests.    

 
The results of the comparison between the FE results and the analytical curves are shown in 
Fig. 3.10 and Fig. 3.11. The almost perfect agreement between the results obtained confirms 
the reliability of the implementation, and the constitutive routine is ready to be used for the 
resolution of more complex BVPs.  

parameter basic path value 
ahc triaxial compression 445.573744711774200 
chc triaxial compression 92.281971097680380 
apc triaxial compression -26.592670066879440 
bpc triaxial compression 0.49462366506676613 
pfc triaxial compression -0.68 
xpc triaxial compression 0.02208547824015395 
ahe triaxial extension 495.847845795075000 
che triaxial extension -592.578517960124100 
a1 triaxial extension 56313.628540470840000 
b1 triaxial extension 218.496878737026900 
c1 triaxial extension 0.2119419723749161 
xm2 triaxial extension -0.00194 
xc triaxial extension -0.002425 
abi triaxial extension -98611.433621953980000 
cbi triaxial extension 0.00 
xt2 triaxial extension -0.012125 
pfe triaxial extension 0.36 
λc isotropic compression 1200 
λco isotropic compression 37.405138519112920 
λex isotropic compression 692.979577453249100 
mco pseudo isotropic compression 1.224744871391589 
mex pseudo isotropic compression 0.00 
asl limit surface 0.6168456884322706 
bsl limit surface -0.8231301796912084 

nsl 
limit surface (Van Eekelen, 
1980) -0.20 

omcis (Chambon et al., 1994) 0.36 
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Fig. 3.10   Triaxial compression test: numerical/analytical comparison. 
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Fig. 3.11   Triaxial compression test: numerical/analytical comparison. 

 

 
 
 
 



 

 



 

 

4 Finite element analyses 

Main purpose of the implementation of different kinds of constitutive models has been the 
resolution of BVPs modelling the problem of shallow foundations on sand subjected to 
different loading schemes.  

As previously pointed out, to this end a large set of experimental results was at 
disposal, so that a systemic comparison between experimental and numerical results was 
possible, thus allowing the assessment of the predictive capabilities of different constitutive 
assumptions. In particular, three different constitutive laws have been chosen: a model 
derived from the well-known Mohr-Coulomb failure criterion (EMC), already embedded in 
the library of constitutive models of the FE code chosen for the analyses (ABAQUS code), 
Simplified Sinfonietta Classica, an elastoplastic model modified in order to make easier the 
identification of the constitutive parameters, and a relatively recent model, belonging to the 
family of hypoplastic models, the CLoE model. The latter two models have been both 
implemented in ABAQUS by the Author.  

The identification of the parameters has been carried out via back-analysis for EMC 
and SSC models, while a different approach has been followed for the calibration of CLoE’s 
parameters, which will be widely described in Section 4.1.4.  

After the identification, some of the laboratory tests have been reproduced, and results 
have been compared. In addition, an isoerror representation of the results has been proposed 
in order to have an overall sight of the reliability of the FE analysis results. 

4.1 Description of the FE model 

Due to the necessity of simplifying as much as possible the geometry of the model and to 
reduce the uncertainties in the computations which cannot to be clearly dependent on the 
constitutive assumptions, the geometry of the model has been modelled within the hypothesis 
of plane strain condition. This assumption appears to be suitable when the ratio between 
length and width of the foundation is equal to 3, while becomes slightly far from reality 
when such a ratio turns to 2 and 1.  

However, since the calibration of the parameters is carried out through a back-
analysis, as it will be pointed out in the next chapters, the effect of such a “strong” 
assumption should vanishes thanks to the particular values assumed by the parameters.  
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Obviously, the values of the parameters which can be putted in direct correlation with 
physical characteristics of the soil have been set a priori, and will not become object of 
identification. 

Moreover, a simple tied contact assumption has been set for the interface between soil 
and foundation, thus allowing to decouple the results from the influence that the particular 
values assumed by the interface parameters would have.  

Concerning this assumption, many researchers have studied the problem of a suitable 
modelling of the eccentric loads on shallow foundations. In particular it has been shown in 
(Hjiaj et al., 2003) how the footing remains in complete contact with the soil if the ratio 
between eccentricity and the width of the plate is less than 0.3, that is exactly the case 
studied in this work. However, in order to assure that such assumption is not far from the real 
behaviour of shallow foundations subjected to eccentric loads, a preliminary test has been 
carried out for verification purposes only. 

Some doubts remain about the effect of such hypothesis when the role played by 
horizontal load components becomes relevant. 

As far as the loading procedure is concerned, it has always been used a load-
controlled mechanism, whose choice has been imposed by the particular loading schemes 
used in the experimental tests. 

A scheme of the tests chosen for the numerical-experimental comparisons is shown in 
Table  4.1, with the following meaning for the symbols: 

 
 

EMC (a=3) CLoE(a=3) SSC(a=3) EMC (a=1) EMC (a=2) 

(CV) CV (CV) (CV) (CV) 

VH3 VH3 VH3 VH3 VH3 

VH8 VH8 VH8 VH8 VH8 

VH14 VH14 VH14 VH14 VH14 

V150H V150H V150H V30H V100H 

e/B=0.125 - e/B=0.125 e/B=0.125 e/B=0.125 

e/B=0.25 - e/B=0.25 - e/B=0.25 

Table  4.1   Tests for numerical-experimental comparisons  

CV refers to centred vertical load, while VHn refers to a load inclined by a n degrees angle. 
VxxxH is a particular test in which a centred vertical load of xxx kN has been applied, 
followed by an horizontal load until breakage. e/B=0.125, being e the load eccentricity and B 
the width of the model foundation (0.08m), corresponds to an eccentric load with e=10mm, 
while e/B=0.25 refers to an eccentricity of 20mm. In Fig. 4.1a,b the different loading 
configurations are shown. 
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As for the presentation of the results, they are plotted in terms of generalized forces (vertical, 
horizontal, and momentum) versus generalized displacements (vertical, horizontal 
displacements and rotations) depending on the particular test considered. 

4.1.1 FE model for numerical analyses 
In this section a description of the FE model used for all the analyses is given. In Fig. 4.2 the 
FE mesh is shown. Vertical displacements are prevented along the sides, while both 
horizontal and vertical displacements are prevented along the bottom side of the mesh.  

As for the soil, the finite elements CPE8, 8-noded elements in plane strain condition 
with parabolic shape function, are used. A unit weight of 16 kN/m3 has been chosen, and the 
contribution of the self weight has been considered in all the analyses. As for the initial 
conditions, a geostatic situation has been set, with an initial value of K0 = 0.50. All the 
analyses have been performed under the hypothesis of dry soil, which corresponds to the real 
situation in the laboratory tests.  
 

 
Fig. 4.2   FE mesh. 

0.08 m 

Fig. 4.1   Schemes of the different loading conditions: (a) eccentric loads, (b) inclined loads. 

H,u 

B 
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V,v 
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The 0.08 m wide foundation, on top of the mesh, has been modelled using rigid link elements 
R2D2, with a tied contact between footing and soil.  

In order to verify the admissibility of such hypothesis, as anticipated in Section 4.1, a 
preliminary test has been performed and whose results are herein shown. 

The tied contact has been replaced by a more realistic frictional one, with a friction 
angle assumed as 2/3 of the friction angle of the soil. So that, a rigid-perfectly plastic 
behaviour, as assumed in the theoretical frictional problem proposed by Mohr-Coulomb, has 
been chosen for this test.  

The eccentric loading scheme of e/B=0.25 has been considered, and the final 
deformed configuration is shown in the contour plot in Fig. 4.3, with a scale factor equal to 2 
for the displacements. As it can be easily observed, only a very limited amount of soil tends 
to loose contact with the footing, so that assuming that the footing remains in contact with 
the foundation can be considered a proper assumption. 

Different variables have been plotted according to the different simulated tests: for 
vertical centred load tests, only the vertical load vs. vertical displacement is of interest, while 
for eccentric loading tests, in addition to the V-v plots, also momentum divided by B (M/B) 
versus rotation angle multiplied by B and vertical displacement versus rotation times B have 
been plotted and compared to the measurements. As for inclined loading tests, the results are 
presented in terms of V-v, horizontal load (H) versus horizontal displacement (u) and vertical 
(v) versus horizontal (u) displacement. 

 
 
 

 
Fig. 4.3   e/B=0.2: deformed configuration (displacement scale = 2). 
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4.1.2 EMC parameters identification 
Some of the constitutive parameters can be determined on the basis of the well-known 
mechanical characteristics of the dense Ticino sand used for the experimental tests: such 
parameters are the friction angle φ and the dilatancy ψ , which have been set to values of 40° 
and 20°, respectively for the first set of tests in which the depth of the foundation has been 
set to 0.24 m (a=3).  

Considering a small value for the cohesion yield stress in correspondence to zero 
plastic strains ( 0c = 0.05 kPa) only to ease the convergence of the FE analysis even at low 
stress levels,  and 0.25 for the Poisson ratio ν , the remaining parameter to be calibrated is 
the Young modulus E, whose value has been identified through back-analysis on the basis of 
a centred vertical test.  

Moreover, in addition to the comparison of the results obtained using CLoE, SSC and 
EMC models, a parametric study has been performed on the influence of the aspect ratio of 
the  metallic plate used in the experimental tests on the reliability of the numerical 
predictions.  

As for the FE model, all the different geometries have been modelled under the 
assumption of plane strain condition, thus requiring a different calibration for each test 
series.  

The aim of such procedure is to verify the possibility to model as plane strain 
condition a even a geometry far from such theoretical assumption, as a square condition can 
be considered. This possibility allowing an important simplification from the computational 
point of view since the only way to properly model such a geometry would be a three-
dimensional analysis, more expensive from a computational point of view.  

In conclusion, throughout all the tests, for  aspect ratios equal to 1 to 3, corresponding 
to the 0.08m x 0.08m square situation to a 0.08m x 0.24m foundation, respectively, the 
geometry of the FE model has been left unchanged, and only the parameters E and φ  have 
been changed in order to match the experimental data for the centred vertical load test.  

The resulting set of constitutive parameters is shown in Table  4.2 and the calibration 
curve are plotted in Fig. 4.4 and Fig. 4.5 in terms of vertical force versus downward 
displacements, for the different aspect ratios of a=1, a=2 and a=3, respectively.  

 
 
 

Table  4.2   Constitutive parameters for the EMC model. 

E (kPa) ν  ψ  (°) φ  (°) 0c  (kPa) 
1400 (a=1) 
2600 (a=2) 
3700 (a=3) 

0.25 20 
29 (a=1) 
37 (a=2) 
40 (a=3) 

0.05 
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Fig. 4.4   EMC model. Calibration curves (a=1,2). 

 

0 0.002 0.004 0.006 0.008 0.01

v (m)

0

2

4

6

8

V
 (k

N
)

 
Fig. 4.5   EMC model. Calibration curves (a=3). 
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4.1.3 SSC parameters identification 
Like for the EMC model, also for SSC model some of the parameters have been determined 
on the basis of the physical and mechanical characteristics of Ticino sand. Without 
specifying the meaning of all the parameters, whose description has already been carried out 
in Section 2.1.2, in Table  4.3 the set of constitutive parameters, resulting from the 
identification test presented in Fig. 4.6, is shown. In addition, the initial value for the 
hardening parameter, 0cp , was set to 5 kPa. 
It is worth noting how the numerical values were chosen in order to reproduce the best fitting 
to the experimental data, through a trial-and-error procedure on the parameters which have 
been calibrated via back-analysis. It can be observed, however, that the ultimate load 
computed via numerical analyses is less than a half of the ultimate experimental vertical 
load. The initial upward concavity of the numerical curve is due to the small elastic nucleus 
created at the beginning of the analysis by imposing the value of 0cp  = 5kPa: such an 
assumption has been imposed in order to avoid convergence problems when the state of 
stress addresses the critical state line with low confining pressures. 

 

Table  4.3   Constitutive parameters for the SSC model. 
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Fig. 4.6   SSC model. Calibration curves. 

M B Be L β ξ 

1.42 0.0009 0.0195 0.001 1.7 0.297 
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4.1.4 CLoE parameters identification 
The identification of the parameters of the CLoE model is not straightforward: as shown in 
Section 2.2.1, the parameters have to be calibrated starting from the so called basic stress 
paths. Moreover, in order to simplify the identification procedure, it has been introduced a 
redundancy for some of the parameters, so that their values are often constrained each other.  
Therefore, one must be careful when determining the numerical values of such parameters, in 
order to avoid the violation of the mathematical constraints on them. A simple Excel 
spreadsheet has been developed (Desrues, 2004), giving the numerical values for the relevant 
parameters on the basis of the results of a triaxial compression and triaxial extension tests.  

Since our main objective is the evaluation of the capability of different constitutive 
models to well capture the experimental behaviour, such triaxial tests have been simulated 
using the SSC model. In this way, the calibration of the parameters of the CLoE model is the 
only one which has not been carried out through a back analysis, since such a procedure is 
completely ineffective due to the large number of constitutive parameters of the hypoplastic 
model.  The final set of calibration curves is shown in Fig. 4.7 and Fig. 4.8, and the 
corresponding parameters are listed in Table  4.4 
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Fig. 4.7   CLoE model. Calibration curves for triaxial compression. 
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Fig. 4.8   CLoE model. Calibration curves for triaxial extension. 

Table  4.4   Constitutive parameters for the CLoE model. 

parameter basic path value 
ahc triaxial compression 533.7217843 
chc triaxial compression 176.5658784 
apc triaxial compression -13.7741047 
bpc triaxial compression 0.9090909 
pfc triaxial compression -0.4050000 
xpc triaxial compression 0.0477015 
ahe triaxial extension 947.5645496 
che triaxial extension -996.5431752 
a1 triaxial extension 13633.6228294 
b1 triaxial extension 81.0198360 
c1 triaxial extension -0.7121800 
xm2 triaxial extension -0.0066000 
xc triaxial extension -0.0072600 
abi triaxial extension -18264.4822307 
cbi triaxial extension 0.0043100 
xt2 triaxial extension -0.0236217 
pfe triaxial extension 0.3200000 
λc isotropic compression 1500.0000000 
λco isotropic compression 151.1933019 
λex isotropic compression 748.1742853 
mco pseudo isotropic compression 1.2200000 
mex pseudo isotropic compression 1.0000000 
asl limit surface 0.6803909 
bsl limit surface -0.1556271 
nsl limit surface (Van Eekelen, 1980) -0.2500000 
omcis (Chambon et al., 1994) 0.35 
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Due to the procedure above described for the calibration of the numerical values of the 
constitutive parameters, even the simple centred vertical load tests are predictions, but for 
completeness of presentation, such results are given in this section, mainly devoted to back-
analysis calibration, and they are shown in Fig. 4.9.  

As it can be observed, the CLoE model, which has shown excellent results when large 
unloading stress paths are followed, e.g. in case of deep excavation problems (Leoni et al., 
2003; Viggiani and Tamagnini, 2000), is much far from the experimental results from both 
the qualitative and quantitative point of view, when modelling  the relatively simple loading 
paths involved in the case of shallow foundations.  

A further study, which goes beyond the scope of this work, should be carried out in 
order to investigate on the reasons of such a poor quality of the predictions. 
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Fig. 4.9   CLoE model. Centred vertical load test. 
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4.2 Analysis results 

In this section the numerical-experimental comparisons are presented. The results are shown 
depending on the particular loading scheme, separately for each constitutive model: CLoE, 
SSC and EMC.  

Due to the procedure adopted for the identification of the numerical values of the 
constitutive parameters, tests performed with EMC and SSC can be regarded as “class B1” 
predictions, according to the definition given in (Lambe, 1973).  

Such a procedure requires the execution of a preliminary test, in this case a centred 
vertical load test, that will be the basis for the calibration of some of the parameters. 

On the other side, for the CLoE model, the classical procedure for “class A” 
predictions has been followed, since the calibration of the constitutive parameters has been 
carried out on the basis of triaxial compression and extension tests. 

As a concluding comparison, a parametric study has been performed by analysing the 
reliability of the predictions evaluated on the basis of a relative error, defined as difference 
between measurements and numerical results varying the aspect ratio of the metallic plates, 
for different load inclinations and at different load levels. 

Throughout all the plots shown in this Section, the solid line represents the reference 
measurements, while the symbols are the numerical predictions.  
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4.2.1 Inclined load VH3, VH8, VH14 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

The first set of loading scheme that has been considered, apart from the centred vertical load 
which has been used for calibrating the constitutive parameters, is a set of inclined loads.  

The inclination angle has been set according to the real disposition of the 
experimental inclinations, say 3, 8 and 14 degrees. In this first set of tests it has been focused 
only on the situation of aspect ratio a=3, corresponding to an out-of-plane depth of the 
metallic plate of 0.24 m. This situation, among the three considered in the experiments 
(a=1,2,3) is the closest to the assumption of plane strain condition for the numerical analyses. 

For this set of comparisons, the results are presented in terms of vertical load versus 
vertical displacement (V-v), horizontal component versus horizontal displacement (H-u), and 
vertical versus horizontal displacement (v-u). 

In Fig. 4.11 and Fig. 4.12 the results obtained with the hypoplastic CLoE model are 
shown: as expected due to the difficulties in modelling even a simple centred vertical test, 
this model gives predictions far from the experimental measurements.  

In particular, the behaviour of the soil appears to be mainly elastic and collapse is 
reached without a significant approach to an asymptotic value. 

Such a shortcoming is evident in almost all the plots, for all the different inclinations. 
It is worth noting how this different behaviour stems from an almost identical behaviour for 
triaxial tests at single Gauss point level, as shown in the calibration curves (Fig. 4.7 and Fig. 
4.8). 

Going deeper into the analysis of the results, it can be observed that the V-v curves 
(A1, B1 and C1) in Fig. 4.11 and Fig. 4.12, show how the response predicted using the CLoE 
model is only slightly influenced by the load inclination. 

Moreover, the H-u curves (A2,B2 and C2) are more sensitive to the inclination, even 
though they are still far away the experimental measurements. However, in both sets of 
curves, the concavity remains upward directed, thus in contrast with the experimental curves. 

B = 0.08 m 

V 

H=V.tan(3,8,14°) 
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Fig. 4.10   Load scheme and variables. 



4.   FE analyses 

 

77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0.002 0.004 0.006 0.008

u (m)

0

0.2

0.4

0.6

0.8

H
 (k

N
)

VH8

0 0.002 0.004 0.006 0.008

u (m)

0

0.005

0.01

0.015

0.02

0.025

v 
(m

)

VH8

0 0.002 0.004 0.006

u (m)

0

0.01

0.02

0.03

v 
(m

)

VH3

0 0.005 0.01 0.015 0.02 0.025

v (m)

0

1

2

3

4

5

V
 (k

N
)

VH8
0 0.002 0.004 0.006

u (m)

0

0.1

0.2

0.3

H
 (k

N
)

VH3

0 0.01 0.02 0.03

v (m)

0

2

4

6

V
 (k

N
)

VH3

Fig. 4.11   CLoE model   A1-A3: VH3,   B1-B3: VH8. 
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From the observation of the displacement curves u-v (A3,B3 and C3) a progressive 
improvement of the predictions is shown: the analysis results are more consistent with the 
measurements at least from a qualitative point of view, since they are both shaped as a 
straight line.  

The inclination of such lines is far from the experimental one when load is almost 
vertical, while tends to approach the measurements with as much as the inclination increases. 

However, this seems to be an incidental result and not really due to the effectiveness 
of the model in capturing the behaviour of the system soil-structure. 

Considering the large differences both from a qualitative and quantitative point of 
view, it seems to be useless to dwell upon further details. 

C3 

Fig. 4.12   CLoE model.   C1-C3: VH14. 
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Fig. 4.14   SSC model.   A1-A3: VH3,   B1-B3: VH8. 

A1 A2 

A3 B1 

B2 B3 



80 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As for the SSC model is concerned, results are plotted in Fig. 4.14 and Fig. 4.15. In terms of 
V-v curves (A1, B1 and C1), FE results are not far from the measurements, even if only a 
percentage of the experimental limit load is reached.  

However, a deterioration in the predictions is observed with the increase of the load 
inclination, as it can be observed by comparing A1 with B1 and C1, which can be explained 
considering that the identification has been carried out starting from a centred vertical test.  

H-u results (A2, B2, and C2), are undoubtedly far from the measurements thus 
reflecting also on the u-v predictions (A3, B3 and C3).  

In particular, the problems encountered in the calibration tests, in which only a small 
part of the ultimate load was mobilized, negatively influences all the further predictions. 
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Fig. 4.15   SSC model.   A1-A3: VH14. 
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As compared to the results obtained with the CLoE model, however, provided that 
large differences are still present in the predictions, such discrepancies are less eminent and 
mostly limited to the quantitative point of view.  

Moreover, it is worth noting how the predictions in terms of horizontal displacements 
are strongly influenced by the assumption of perfectly rough (tied) contact between footing 
and soil. The role played by this simplifying hypothesis is less substantial when the 
horizontal load component becomes less important. 

To conclude the comparisons about the case of inclined loads, the results concerning 
the EMC model are presented.  

It is evident a good agreement between computed displacements and measurements, 
not only for the V-v curves shown in A1, B1 and C1 (Fig. 4.16), but also for the more 
“difficult” H-u curves A2, B2 and C2.  

In particular, as for v-u plot A3, the qualitative result is consistent with the 
measurements, while a limited quantitative difference appears: thus can be explained 
observing graph A2, in which horizontal displacements are slightly underestimated, thus 
reflecting on the higher slope of curve in A3. Similar observations can be drawn about the 
other v-u plots (B2 and C2). 

As it can be easily observed, the quality of the predictions is barely influenced by the 
load inclination, since with this constitutive model, the results of the FE analyses are 
particularly close to the experimental results throughout all the tests.  
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Fig. 4.16   EMC model.   A1-A3: VH3,   B1-B3: VH8. 
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4.2.2 Vertical-Horizontal load V150H 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another loading scheme modelled through FE analyses is the V150H: a centred vertical load 
is applied, in this case until an overall force of 1.5 kN is reached, followed by the application 
of an horizontal force until failure while the vertical component is kept constant (Fig. 4.18).  

The out-of-plane depth of the foundation for the experimental tests considered in 
these comparisons is again 0.24 m, thus giving an aspect ratio a=3.  

This particular loading scheme should follow the V-v calibration curves, shown in 
Section 4.1, until the vertical load chosen for each test series, apart from some minor 
differences due to the uncertainties involved in each laboratory test. 

The coupling between vertical and horizontal forces and the corresponding 
displacements, provokes an increase in vertical displacements during the application of 
horizontal load even if the vertical load is kept constant. 

For the sake of clarity the comparisons are shown in separate figures (Fig. 4.19, Fig. 
4.20 and Fig. 4.21) for each considered constitutive model. 

The analysis performed using the CLoE model shows a behaviour that reproduces the 
shapes of the experimental results, but the numerical values are still far the measurements. 

In particular, in Fig. 4.19 A1 the additional vertical displacement due to the vertical 
load is well captured, but the displacement predicted for the initial loading phase is much 
larger than the measured one. Not far from reality is the H-u graph (Fig. 4.19 A2): a good 
prediction of the shape of the experimental curve is shown, even if this comes with an 
overestimated displacement.  

As expected, all these problems can be retrieved in the last chart (Fig. 4.19 A3) where 
vertical displacement is plotted versus the horizontal one: it is worth noting, however, how, 
as for the shape, the predictions are not far from the experimental results. 

As far as the SSC model is concerned, in Fig. 4.20 A1 the initial part of the numerical 
curve shows a clear elastic behaviour due to the initial value of the hardening parameter 0cp . 
Such effect, however, tends to disappear even for very low values of vertical load. 

B = 0.08 m 
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Fig. 4.18   Load scheme and variables 
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The further comparison, concerning the H-u curves (Fig. 4.20 A2) shows an acceptable 
agreement: the concavity of the numerical curve is less pronounced, however the predicted 
values are close enough to the measurements if values of horizontal load far from the failure 
load.  

A further comment can be made about the capability of the model to capture the limit 
horizontal load in this test, even if the corresponding horizontal displacements are less that a 
half of the measured ones, thus negatively influencing the v-h curve shown in Fig. 4.20 A3.  

As observed for the previous set of tests, the EMC model gives the more satisfactory 
results, as shown in Fig. 4.21 A1-A3.  

Fig. 4.19   CLoE model.   A1-A3: V150H. 
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In particular, the settlement computed with the vertical load applied in the first step of the 
test is in almost perfect agreement with the experimental measurements.  

In the further step, when the horizontal component is added to the vertical part, which 
is kept constant once the final value is reached at the end of the previous step, the horizontal 
displacement of the foundation is again in excellent agreement with the measured one.  

It can be observed, moreover, the more than satisfactory prediction of the vertical 
settlement due to the application of the vertical component (Fig. 4.21 A1) 

Such a good prediction is summarized in Fig. 4.21 A3, in which the vertical 
settlement is related to the horizontal displacement of the foundation: in this case, an overall 
excellent result can be observed from both qualitative and quantitative point of view. 
 

Fig. 4.20   SSC model.   A1-A3: V150H. 
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Fig. 4.21   EMC model.   A1-A3: V150H. 
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4.2.3 Eccentric load e/B=0.125, e/B=0.25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this section the FE analysis results obtained from the modelling of the application of an 
eccentric load on the metallic plate are shown.  

Considering the results of the previous tests, the CLoE model has been excluded from 
the comparison, since it has shown strong limitation in capturing the experimental behaviour 
even in simple centred vertical load tests.  

Therefore, only the results obtained with SSC and EMC model will be presented. As a 
result, the quality of the predictions shown using SSC model are good but they are still 
underestimating as far as the prediction of the limit load is concerned, while predictions of 
the settlements far from the limit load are good in relation to the measurements.  

It is worth noting, that the shape described by the numerical plots is not always 
smooth as expected, thus showing fast changes in slope. 

The results concerning the small eccentricity, e/B=0.125, shown in Fig. 4.23 A1-A3 
are in a better agreement with the experimental measurements than series B1-B3, showing 
the same loading scheme of eccentric load, but this time with a larger eccentricity 
(e/B=0.25).  

Also for this set of comparisons, the best result is the one given by the EMC model. 
Fig. 4.23 A1-A3 and B1-B3 undoubtedly reveal the effectiveness of such a model in 
capturing the experimental displacements and rotations.  

In particular, Fig. 4.23 A2 shows how the FE analysis is perfectly matching the 
experimental curve in terms of vertical displacements versus angle of rotation of the 
foundation multiplied by the width B.  

With the increase of the eccentricity, whose corresponding tests are shown in Fig. 
4.23 B1 to B3, the apparent major differences in Fig. 4.23 become less important considering 
the initial shape of the experimental curve, which has been probably affected by a 
measurement error. 
 
 

Fig. 4.22   Load scheme and variables. 
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Fig. 4.23  SSC model.    A1-A3: e/B=0.125   B1-B3: e/B=0.25. 
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Fig. 4.24   EMC model.    A1-A3: e/B=0.125   B1-B3: e/B=0.25. 
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4.2.4 Parametric comparison for EMC model 

 
Fig. 4.25   Shapes of metallic plates. 

As shown in the previous Sections, as of this point only the experimental measurements 
concerning a rectangular 0.08x0.24 m foundation has been taken as a reference, being such a 
geometry the closest to a plane strain condition.  

Considering the good performance of the EMC model, as shown by the results 
presented in this Chapter, it has been explored the possibility, as sketched in Section 4.1.2, to 
model even different geometries with an aspect ratio a=1 and a=2, corresponding to the out-
of-plane depths of 0.08 m and 0.16 m, respectively, which were involved in the laboratory 
tests.  

In these further tests, the same plane strain assumption for the FE analyses, but a 
different set of values of constitutive parameters has been used, whose calibration has been 
carried out as explained in Section 4.1.2. 

This further set of tests is mainly focused on an evaluation of the possibility to use a 
simple constitutive model, like the EMC already embedded in the library of constitutive 
models of the ABAQUS code, with a simple 2D FE model representing the real three-
dimensional problem.  

As shown in Table  4.1 and recalled in Table  4.5, the numerical analyses have been 
performed according to the availability of experimental measurements, so that a systematic 
comparison can be performed only on the results of the tests performed with the same 
loading scheme when varying the only aspect ratio. 

Let us focus first on the inclined load tests: such a large set of data requires an easy 
way to represent the results in order to have a clear information about the quality of the 
predictions.  

To this end only the V-v tests have been taken into account, and a relative error has 
been defined as shown in 4.1, where vFE is the vertical displacement as predicted in the FE 
analyses corresponding to a given percentage of the limit load as evaluated in the laboratory, 
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EMC (a=1) EMC (a=2) EMC (a=3) 

(CV) (CV) (CV) 
VH3 VH3 VH3 
VH8 VH8 VH8 

VH14 VH14 VH14 
V30H V100H V150H 

e/B=0.125 e/B=0.125 e/B=0.125 
- e/B=0.25 e/B=0.25 

Table  4.5   EMC mode: Set of FE analyses performed. 

 

 
v v

% 100
v

FE LAB

LAB

err
−

= ⋅  4.1 

and vLAB  is the vertical settlement of the foundation measured during the test in 
correspondence of the same load level. The absolute value of their difference is therefore 
divided by vLAB  in order to make %err  a dimensionless quantity.  

The resulting set of data has been plot as shown in Fig. 4.29 to Fig. 4.31, for the three 
different load inclination which has been considered, namely 3, 8 and 14 degrees: the x 
values are represented by the different aspect ratios considered, that is a=1, 2 and 3. On the y 
axis the experimental limit load percentages are considered, and the lines contoured in the 
plots correspond to isoerror lines.  

As it can be observed, when the load inclination is small, namely 3 degrees, there is a 
wide area of the plot in which the %err  is less than the 25%, while the %err  becomes 
higher when around a 10% or over 90% of the limit load is considered.  

When increasing load inclination (8°, Fig. 4.30), such an area narrows, so that the 
high reliability area is restricted between 25% and 85% of the limit load. 

When the load inclination is set to a value of 14 degrees (Fig. 4.31), the trend 
observed in the two previous contour plots is confirmed: the best area is now limited from 
20% to less than 60% of the limit load, and it is more evident the influence of the aspect ratio 
on the quality of the predictions, since it is increasing with increasing abscissa, which 
corresponds to a higher value for the aspect ratio. 

For the same tests, also a different representation is proposed: in Fig. 4.32, while the 
data represented on the vertical axis are the percentages of limit load, in the abscissa the load 
inclinations are plotted.  

Summing up, in the first set of contour plots the load inclination has been considered 
as a parameter, while in this last set of plots the parameter was the aspect ratio.  
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Thus allowing to investigate, in the former case, the influence of the aspect ratio 
being constant the load inclination, while, in the latter, the influence of the load inclination 
with fixed aspect ratio has been studied. 

The plot refers to the situation of an aspect ratio a=3, while in Fig. 4.33 and Fig. 4.34,  
the different situations in which a=2 and a=1 were respectively taken into account.  

Considering an aspect ratio of a=3, as shown in Fig. 4.32, the per cent error is below 
25% within a range o 20%-80% of the limit load with an evident worsening of the 
predictions when the load inclination increases to 14 degrees.  

Such a behaviour is confirmed in Fig. 4.33 and Fig. 4.34, where the influence of the 
load inclination is more accentuated.  

As a concluding remark, it can be observed how the influence of both the geometry of 
the foundation and the load inclination play a similar role on the quality of the predictions: 
indeed, their appropriate variation induce a similar effect on the isoerror maps. 

As stated before, only the inclined load tests have been used for such a comparison, 
while the VxxxH and the eccentric load test results are shown only as a further confirmation 
of the effectiveness of the EMC model, and they are plotted in figures from Fig. 4.35 to Fig. 
4.37 
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 Fig. 4.26   EMC model, a=1.   A1-A3: e/B=0.125     B1-B3: VH3     C1-C3: VH8     D1-D3: VH14. 
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Fig. 4.27   EMC model, a=2.   A1-A3: e/B=0.125     B1-B3: VH3     C1-C3: VH8     D1-D3: VH14. 
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Fig. 4.28   EMC model, a=3.   A1-A3: e/B=0.125     B1-B3: VH3     C1-C3: VH8     D1-D3: VH14. 
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Fig. 4.29   EMC model.   VH3. 
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Fig. 4.30   EMC model.   VH8. 
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Fig. 4.31   EMC model.   VH14. 
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Fig. 4.32   EMC model: a=3. 
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Fig. 4.33   EMC model: a=2. 
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Fig. 4.34   EMC model: a=1. 
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Starting with the analysis of the result obtained from the numerical-experimental comparison 
in the case of square 0.08 m x 0.08 m foundation (a=1) for a V30H test, shown in Fig. 4.35, 
the numerical results are again in good agreement with the measurements, both from a 
qualitative and quantitative point of view. In this test, the shape of the foundation seems to 
have a minor influence on the quality of the results. 

In Fig. 4.36 the results concerning the a=2 configuration are shown. The choice of the 
tests has been conditioned by the availability of laboratory measurements, and a comparison 
with the previous case of a=1 (and with the next a=3) is therefore impossible.  

We just observe the good agreement of the numerical predictions with the 
experiments, both for the e/B=0.25 test (A1, A2 and A3) and for the V100H test (B1, B2 and 
B3), and will not be dwelt on Fig. 4.37, in which some results with a=3 are shown. 
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It is worth noting how such results have already been discussed in the Sections focused on 
the specific tests, and they are here proposed again in order to have an overall idea of the 
effectiveness of the EMC model when modelling the different loading situations considered.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 



 

 

5 Conclusions 

Since powerful computers have become accessible to the common user, a great interest has 
been devoted to the methods of resolution of engineering problems, and particularly to the 
finite element method (FEM).  

The resolution of a boundary value problem through FE analyses requires the 
assumption of a constitutive model for the material involved. In particular, for the soil, many 
constitutive laws have been proposed in the past, starting from the original work of the 
Cambridge group which, in the ‘60s, developed the Cam-Clay model within the framework 
of elastoplasticity. 

The constitutive models are often built aiming to model some laboratory tests 
following simple stress paths, like triaxial compression or extension and oedometric paths, 
but the best confirmation of the capability of a constitutive assumption to capture the 
behaviour of soils involved in a geotechnical construction comes from the comparison of the 
results of FE analyses with the measurements on real structures. 

Among the classes of geotechnical engineering problems which are nowadays easily 
studied through FE analyses, the case of shallow foundations is one of greatest interest, since 
it involves very common structures relatively easily reproducible in laboratory tests in 
reduced or true scale, in order to assure the availability of a database of measurements useful 
for the validation of the models.  

In this work a large series of laboratory tests on rigid shallow foundations on sand 
(Montrasio, 1994) has been used as “benchmark” for the evaluation of the predictive 
capabilities of the constitutive models considered: the Simplified Sinfonietta Classica (SSC) 
model, CLoE hypoplastic model, and the Extended Mohr Coulomb (EMC) model already 
embedded in the library of constitutive routines of ABAQUS, the FE code chosen for all the 
numerical analyses herein presented.  

The numerical-experimental comparisons were carried out in terms of generalized 
forces (forces and moments) versus generalized displacements (settlement and rotations) 
instead of a stress/strain approach, in the light of the definition of a macro-element 
behaviour. 

Due to the hypothesis of rigid footing, there is no need to choose a constitutive law 
for the metallic plate on which the loads were applied, thus allowing to focus on the effects 
of the constitutive assumptions for the soil. To model the footing, a rigid link element has 
been used. 

For the SSC and CLoE models the implementation into the FE code was necessary 
and the two constitutive routines were developed using the Fortran code. 
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The theoretical validation of the constitutive models was already carried out by the 
respective Authors, even if the SSC differs from the original Sinfonietta Classica in some 
points, as widely explained in Chapter 1.  

However, in this work the capability of the models to capture the behaviour of soils 
has been assumed a priori, at least for the stress paths typically followed in simple laboratory 
tests, and it has mainly been focused on the effectiveness and reliability of the 
implementations.  

For the implementation of the SSC model, two different formulations have been 
proposed, both within the framework of elastic predictor and plastic corrector: the former 
formulation has been built in terms of stress components, the latter in terms of strains. The 
advantages in a formulation in terms of stresses are mainly in the easier formulation of the of 
the residual vector’s derivatives required by Newton’s algorithm, while with a formulation in 
terms of strains the computation of the consistent tangent operator is straightforward.  

A simple axisymmetric test has been performed in order to evaluate the effectiveness 
of the two routines: provided that the results obtained are coincident, as expected, some 
important differences occur as far as the computational cost is concerned.  

The formulation in terms of strain components and analytical construction of the 
consistent tangent operator, reveals to be more efficient than a formulation in terms of stress 
components in which a numerical approximation of the tangent operator is given.  

The explicit algorithm used for the implementation of the CLoE model has not been 
subjected to performance tests since already used by other Authors for the implementation of 
the K-hypoplasticity (Fellin and Ostermann, 2002), but only some tests on the basic stress 
paths have been performed, in order to assess the reliability of the implementation.  

Some simplifications have been imposed on the FE model reproducing the real 
situation of the laboratory tests: a plane strain condition model was built, and the hypothesis 
of a perfectly rough behaviour between the metallic plate and the soil was assumed.  

The need of such simplification is due to the necessity of limiting the uncertainties of 
the model, since specific tests should be performed to properly determine the most suitable 
interface model and its parameters.  

It is worth noting, however, that it has been widely demonstrated how such an 
assumption does not influence the analysis results, as regards contact pressures, if the 
eccentricity is less then 0.3 times the width of the foundation.  

After the design of the FE model, with suitable boundary and initially geostatic 
conditions the calibration of the constitutive parameters via back-analysis on the basis of a 
simple centred vertical load test was carried out.  

The analysis results obtained have shown strong limitations of the CLoE model in 
reproducing the experimental results, even if the calibration, based on a triaxial compression 
and extension tests, has given quite satisfactory results.  

The shape of the obtained curves shows a monotonic upward orientation that is in 
contrast with the experimental measurements. Only in some particular cases, the shape of the 
numerical simulation roughly reproduces the experimental behaviour. 



5.   Conclusions 
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Such limitations should be explained carrying out a theoretical study on the 
formulation of the law, thus going beyond the scope of this work, which mainly focuses on 
the evaluation of the predictive capability of different constitutive models.  

As far as the predictive capability of the SSC model is concerned, some good results 
are obtained: even if the limit load predicted through FE analysis is always underestimated 
with respect to the experimental one, the displacement prediction is almost always consistent 
with the measurements.  

The simplified version of the original Sinfonietta Classica shows its major limitation 
in the prediction of the shape of the load displacements curves, since the concavity of the 
first part of the curves is directed upward, thus showing a prevailing elastic behaviour. 

This fact is undoubtedly due to the value assumed for the initial value of the 
hardening parameter, which has been set to 5 kPa, a considerable value if compared to the 
confining pressures involved in the real problem.  

Unfortunately, due to convergence problem in correspondence to a low confining 
pressure, the value of 0cp cannot be reduced without compromising the stability of the 
computations.  

The problem could be solved by substituting the structure of the yield function and 
the plastic potential proposed by Nova with another formulation, as for instance the one 
suggested in (Lagioia et al., 1996), which has already been successfully used by many 
Authors.  

Another improvement that would increase the efficiency of the proposed model, is the 
substitution of the hypoelastic form for the elastic behaviour, that could be conveniently 
replaced by hyperelasticity, for instance in the form proposed in (Borja et al., 1997) thus 
allowing to skip the integration of the elastic predictor. The elastic problem would be solved 
in closed form only knowing the elastic strain components by simple evaluation of an energy 
function.  

These observation are the basis for a further development of the implementation and 
would permit the modelling of a cyclic behaviour of the soil thanks to the assumption of a 
free energy function. 

The best predictions are obtained with the simplest EMC model: the results are quite 
satisfactory both from a qualitative and a quantitative point of view.  

A wide set of tests has been performed, and the capability of the model to capture the 
experimental behaviour is clearly shown in Chapter 4.  

Moreover, the influence on the reliability of the numerical analysis has been 
investigated by the editing of isoerror maps, in which the difference between numerical and 
experimental results is put in relation to the per cent amount of the measured limit load, the 
load inclination and the out-of-plane depth of the footing, thus allowing to conclude that the 
best performances of the model are achieved when the applied load is within a range far from 
the initial loading steps and the ultimate load. 

 In conclusion, the numerical-experimental comparisons are suggesting that the CLoE 
model, which has been proven to give satisfactory results when applied for the resolution of  
geotechnical engineering problems like deep excavations or tunnel excavations, shows strong 
limitations in the modelling of the relatively simple case of a shallow foundation.  
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Moreover, the identification of the parameters of the hypoplastic model in not 
straightforward, and requires, at least, a triaxial compression test, that is a routine laboratory 
test, but also a triaxial extension, which is decisively a less common test.  

All these shortcomings raise some doubts on the practical applicability of such a 
model for the resolution of a simple geotechnical problem. 

The SSC model gives better results, even still far from the experimental results, but 
the overall response can be considered as satisfactory, even taking into account the easy 
calibration of the constitutive parameters herein carried out through back-analysis, but that 
could be performed starting from the results of a triaxial compression and an oedometric test. 

Among the three models chosen for the mechanical behaviour of the soil, the EMC 
model gives the best results. Despite its relatively simple mathematical structure, as 
compared with the other models chosen for the comparisons, the results are extremely good 
for almost all the tests reproduced via FE analyses.  

The calibration test, a simple centred vertical load test, revealed the capability of the 
model of capturing the behaviour of the experimental model only by operating on the values 
of Young modulus E and the shear strengthφ even if the important assumption of plane strain 
condition was chosen .  

The reliability of the predictions was shown for inclined and eccentric load test for 
more complex loading paths as well, all giving a good agreement between computed and 
measured displacements and rotations. 

 
 
 
 
 
 



 

 

References 
 

 

 

 

ALLERSMA G. B. (2003) "Centrifuge research on bearing capacity of suction caissons." 
FONDSUP, Paris, 29-36. 

BELLOTTI R., CRIPPA V., MORABITO P., PEDRONI S., BALDI G., FRETTI C., 
OSTRICATI D., GHIONNA V., JAMIOLKOWSKI M., and PASQUALINI E. 
(1985) "Laboratory validation of in situ tests." AGI Jubilee Volume XI ICSMFE, 
San Francisco. 

BORJA R. I., LIN C.-H., and MONTANS F. J. (2001). "Cam-Clay plasticity, Part IV: 
Implicit integration of anisotropic bounding surface model with nonlinear 
hyperelasticity and ellipsoidal loading function." Computer Methods in Applied 
Mechanics and Engineering, 190, 3293-3323. 

BORJA R. I., and TAMAGNINI C. (1998). "Cam-Clay plasticity Part III: Extension of the 
infinitesimal model to include finite strains." Computer Methods in Applied 
Mechanics and Engineering, 155, 73-95. 

BORJA R. I., TAMAGNINI C., and AMOROSI A. (1997). "Coupling Plasticity and Energy-
Conserving Elasticity. Models for Clays." Journal of Geotechnical and 
Geoenvironmental Engineering, 948-957. 

BOUSSINESQ J. (1885). Application des potentiels à l'étude de l'équilibre et du mouvement 
des solides élastiques, Goutier-Villard, Paris. 



108 

 

BRINCH HANSEN J. (1967) "The philosophy of foundation design criteria safety factors 
and settlement limits." Symposium on bearing capacity and settlement of 
foundations, Duke University, 9-13. 

BUTTERFIELD R., and GOTTARDI G. (2003) "Determination of yield curves for shallow 
foundations by "swipe" testing." FONDSUP, Paris, 111-118. 

CHAMBON R., and DESRUES J. (1985) "Bifurcation par localisation et non linéarité 
incrémentale: un example heuristique d'analyse complète." Plastic Instability, 
Aussois, 101-113. 

CHAMBON R., DESRUES J., HAMMAD W., and CHARLIER R. (1994). "CLoE, a new 
rate-type constitutive model for geomaterials: theoretical basis and 
implementation." International Journal  for Numerical and Analytical  Methods 
in Geomechanics, 18, 253-278. 

CHAMBON R., DESRUES J., HAMMAD W., and CHARLIER R. (1995). "CLoE 
Consistance et Localisation Explicite, une loi incrémentale non lineaire." 

CHAMBON R., DESRUES J., and TILLARD D. (1994) "Shear moduli identification versus 
experimental localisation data." Localisation and Bifurcation Theory for Soils 
and Rocks, Aussois, 101-111. 

CHEN W.-F., and HAN D. J. (1988). Plasticity for Structural Engineers, Springer Verlag, 
New York. 

COLOMBI A. (2005). "Physical modelling of an isolated pile in coarse grained soils," PhD 
thesis. 

CREMER C., PECKER A., and DAVENNE L. (2001). "Cyclic macro-element for soil-
structure interaction: material and geometrical non-linearities." International 
journal for numerical and analytical methods in geomechanics, 1257 - 1284. 



References 

 

109 

CREMER C., PECKER A., and DAVENNE L. (2002). "Modelling of nonlinear dynamic 
behaviour of a shallow foundation with macro-element." Journal of earthquake 
engineering, 6(2), 175 - 211. 

CUNDALL P. A., and STRACK O. D. L. (1979). "A discrete numerical model for granular 
assemblies." Géotechnique, 29(1), 47-65. 

DESRUES J. (1984). "La localisation de la déformation dans le matériaux granulaires," PhD 
Thesis, Université de Grenoble. 

DESRUES J. (2004). Personal Communication. 

DESRUES J., and CHAMBON R. (1989). "Shear band analysis for granular materials: the 
question of incremental non linearity." Ingénieur, Archive 59, 187-196. 

FELLIN W., and OSTERMANN A. (2002). "Consistent tangent operators for constitutive 
rate equations." International Journal  for Numerical and Analytical  Methods in 
Geomechanics, 26(1213-1233). 

GUDEHUS. (1979) "A comparison of some constitutive laws for soils under radially 
symmetric loading and unloading." 3rd International Conference for Numerical 
Modelling in Geomechanics, Aachen, 1309-1324. 

HAIRER E., and WANNER G. (1991). Solving Ordinary Differential Equations. II: Stiff and 
Differential-Algebraic Problems, Berlin. 

HIBBITT, KARLSSON, and SORENSEN. (2003). ABAQUS Theory Manual. 

HJIAJ M., LYAMIN A. V., and SLOAN S. W. (2003) "Bearing capacity of a shallow 
foundation subjected to an eccentric load using numerical limit analysis." 
FONDSUP, Paris, 311 - 318. 



110 

 

KOLYMBAS D. (1991). "An outline of hypoplasticity." Archives of Applied Mechanics, 61, 
143-151. 

KOLYMBAS D., and WU W. (1993). "Introduction to hypoplasticity." Modern Approaches 
to Plasticity, Kolymbas, ed., Elsevier, 213-224. 

LADE P. V. (1977). "Elasto-plastic stress–strain theory for cohesionless soil with curved 
yield surfaces." International Journal for Solids and Structures, 13, 1019-1035. 

LAGIOIA R., PUZRIN A. M., and POTTS D. M. (1996). "A New Versatile Expression for 
Yield and Plastic Potential Surfaces." Computers and Geotechnics, 19(3), 171-
191. 

LAMBE T. W. (1973). "Prediction in soil engineering." Géotechnique, 23(2), 149-202. 

LEONI M. (2004) "Two different strategies for the implementation of an elastoplastic 
constitutive model." NUMOG IX, Ottawa, 229-235. 

LEONI M., MIRIANO C., TAMAGNINI C., and VIGGIANI G. (2003) "Ground movements 
induced by excavations in sand: a comparison between different hypoplastic 
models." 3X4 Workshop: Constitutive modelling and analysis of boundary value 
problems in geotechnical engineering, Napoli, 375-412. 

LEONI M., and MONTRASIO L. (2003) "A numerical investigation on shallow foundations 
on sand." FONDSUP, Paris, 335-344. 

LOURENÇO P. B. (1995). "An orthotropic continuum model for the analysis of masonry 
structures." TNO-95-NM-R0712, University of Technology, Delft. 

MÉNETREY P., and WILLAM K. J. (1995). "Triaxial failure criterion for concrete and its 
generalization." ACI Structural Journal, 92, 311-318. 



References 

 

111 

MONTRASIO L. (1994). "Un metodo per il calcolo dei cedimenti di fondazioni su sabbia 
soggette a carichi eccentrici e inclinati," PhD thesis, Politecnico di Milano. 

MONTRASIO L., and NOVA R. (1997). "Settlements of shallow foundations on sand: 
geometrical effects." Géotechnique, 47(1), 49-60. 

NOVA R. (1977). "On the hardening of soils." arch mech stos, 29(3), 445-458. 

NOVA R. (1988) ""Sinfonietta classica": an exercise on classical soil modelling." 
Constitutive equations for granular non-cohesive soils, Cleveland, 239-257. 

NOVA R., CASTELLANZA R., and TAMAGNINI C. (2003). "A constitutive model for 
bonded geomaterials subject to mechanical and/or chemical degradation." 
International Journal  for Numerical and Analytical  Methods in Geomechanics, 
27, 705-732. 

NOVA R., and DI PRISCO C. (2003) "The macro-element concept and its application in 
geotechnical engineering." FONDSUP, Paris, 389 - 396. 

POULOS H. G., and DAVIS E. H. (1974). Elastic solution for soils and rock mechanics, 
John Wiley & Sons, New-York. 

SCHOFIELD A., and WROTH P. (1967). Critical State Soil Mechanics, Mc-Graw Hill, New 
York. 

SIMO J. C., and GOVINDJEE S. (1986). "B-Stability and symmetry preserving return 
mapping algorithms for plasticity and viscoplasticity." International Journal  for 
Numerical Methods in Engineering, 31, 151-176. 

SIMO J. C., and HUGHES T. J. R. (1997). Computational Inelasticity, Springer Verlag, New 
York. 



112 

 

TAMAGNINI C., CASTELLANZA R., and NOVA R. (2002). "A Generalized Backward 
Euler algorithm for the numerical integration of an isotropic hardening 
elastoplastic model for mechanical and chemical degradation of bonded 
geomaterials." International Journal  for Numerical and Analytical  Methods in 
Geomechanics, 26, 963-1004. 

TAMAGNINI C., CASTELLANZA R., and NOVA R. (2002). "Implicit integration of 
constitutive equations in computational plasticity." Révue Française de Génie 
Civil, 6, 1051-1067. 

TAMAGNINI C., VIGGIANI G., and CHAMBON R. (2000). "A review of two different 
approaches to hypoplasticity." Constitutive Modelling of Granular Materials, 
Springer, Berlin. 

TAMAGNINI C., VIGGIANI G., CHAMBON R., and DESRUES J. (2000). "Evaluation of 
different strategies for the integration of hypoplastic constitutive equations. 
application to the CLoE model." Mechanics of Cohesive-Frictional Materials, 
5(4), 263-289. 

TEJCHMAN J., and HERLE I. (1999). "A class "A" prediction of the bearing capacity of 
plane strain footings on sand." Soils and Foundations, 39(5), 47-60. 

TERZAGHI K. (1943). Theoretical soil mechanics, John Wiley & Sons, New-York. 

TRUESDELL C. A. (1956). "Hypo-elastic shear." Journal of Applied Physics, 27, 441-447. 

VAN EEKELEN H. A. M. (1980). "Isotropic yield surfaces in three dimensions for use in 
soil mechanics." International Journal  for Numerical and Analytical  Methods 
in Geomechanics, 4, 98-101. 

VESIC A. S. (1975). "Bearing capacity of shallow foundations." Foundation Engineering 
Handbook, Van Nostrand Reinhold Company, 121-147. 



References 

 

113 

VIGGIANI G., and TAMAGNINI C. (2000). "Ground movements around excavations in 
granular soils: a few remarks on the influence of the constitutive assumptions on 
FE predictions." Mechanics of Cohesive-Frictional Materials, 5(5), 399-423. 

WU W., and KOLYMBAS D. (1999). "Hypoplasticity then and now." Constitutive 
Modelling of Granular Materials, Springer, Berlin. 

ZIENKIEVICZ O. C., and TAYLOR R. L. (2000). The Finite Element Method (5th edition). 
 
 


